938 resultados para Amazon herb
Resumo:
Internet è la rete globale a cui si può avere accesso in modo estremamente facile, consentendo praticamente a chiunque di inserire i propri contenuti in tempi rapidi, a costi quasi nulli e senza limitazioni geografiche. Il progresso tecnologico e la maggiore disponibilità della banda larga, uniti alle nuove modalità di fruizione ed ai nuovi format, hanno portato ben il 70% degli web users a vedere video online regolarmente. La popolarità dei servizi di streaming video è cresciuta rapidamente, tanto da registrare dei dati di traffico impressionanti negli ultimi due anni. Il campo applicativo della tesi è Twitch, il più celebre servizio di streaming che è riuscito ad imporsi come quarto sito negli Stati Uniti per traffico Internet: un dato sorprendente se pensiamo che si occupa solo di videogiochi. Il fenomeno Twitch è destinato a durare, lo dimostrano i 970 milioni di dollari investiti da Amazon nel 2014 per acquistare la piattaforma, diventata così una sussidiaria di Amazon. L'obiettivo della tesi è stato lo studio di mercato della piattaforma, attraverso il recupero e l'analisi delle informazioni reperibili in letteratura, nonché attraverso estrapolazione di dati originari mediante le API del sito. Si è proceduto all’analisi delle caratteristiche del mercato servito, in termini di segmentazione effettiva, rivolta alla messa in evidenza della possibile dipendenza dai comportamenti dei player, con particolare attenzione alla possibile vulnerabilità.
Resumo:
Recent interest in spatial pattern in terrestrial ecosystems has come from an awareness of theintimate relationship between spatial heterogeneity of soil resources and maintenance of plant species diversity. Soil and vegetation can vary spatially inresponse to several state factors of the system. In this study, we examined fine-scale spatial variability of soil nutrients and vascular plant species in contrasting herb-dominated communities (a pasture and an oldfield) to determine degree of spatial dependenceamong soil variables and plant community characteristics within these communities by sampling at 1-m intervals. Each site was divided into 25 1-m 2 plots. Mineral soil was sampled (2-cm diameter, 5-cm depth) from each of four 0.25-m2 quarters and combined into a single composite sample per plot. Soil organic matter was measured as loss-on-ignition. Extractable NH4 and NO3 were determined before and after laboratory incubation to determine potential net N mineralization and nitrification. Cations were analyzed using inductively coupled plasma emission spectrometry. Vegetation was assessed using estimated percent cover. Most soiland plant variables exhibited sharp contrasts betweenpasture and old-field sites, with the old field having significantly higher net N mineralization/nitrification, pH, Ca, Mg, Al, plant cover, and species diversity, richness, and evenness. Multiple regressions revealedthat all plant variables (species diversity, richness,evenness, and cover) were significantly related to soil characteristics (available nitrogen, organic matter,moisture, pH, Ca, and Mg) in the pasture; in the old field only cover was significantly related to soil characteristics (organic matter and moisture). Both sites contrasted sharply with respect to spatial pattern of soil variables, with the old field exhibiting a higher degree of spatial dependence. These results demonstrate that land-use practices can exert profound influence on spatial heterogeneity of both soil properties and vegetation in herb-dominated communities.
Resumo:
Aerial photography and satellite imagery reveal manifold geomorphological evidence of a dynamic evolution of past and present rivers in the Bolivian Amazon. Comparison of oxbow lake and meander scar dimensions along an inactive meander belt of the Río Mamoré (Llanos de Moxos, north-eastern Bolivia) and its modern counterpart suggests significant regional paleohydrological variability. We used these features as geomorphological and sedimentary archives to enhance our understanding of longer-term variations of the fluvial system. Late Pleistocene to Holocene hydrological changes of the Río Mamoré are inferred from: (i) the analysis of satellite imagery, (ii) discharge estimates from meander morphology, (iii) stratigraphic, and (iv) chronological information based on luminescence and radiocarbon dating. The combined data from three oxbows indicate that the now abandoned meander belt – the paleo-Mamoré – continued to be active at least until ∼5 ka, and likely even postdating 3 ka. An up to threefold increase in discharge is estimated for the modern Río Mamoré versus the paleo-Mamoré. The altered runoff regime may have triggered an avulsive shift towards the currently active Río Mamoré. The preceding increase in discharge in turn, was possibly related to a shift in climatic conditions, which changed markedly between the mid- and late Holocene in tropical South America. In addition, it may have been the indirect result of capturing the avulsive Río Grande system to the east of the Río Mamoré. Alternative explanations for the differences in dimensions of the paleo versus the modern Río Mamoré, i.e. contemporaneous activity of both rivers or alteration of site factors such as the channel/floodplain relationship, are considered to be unlikely.
Resumo:
The Bodélé Depression (Chad) in the central Sahara/Sahel region of Northern Africa is the most important source of mineral dust to the atmosphere globally. The Bodélé Depression is purportedly the largest source of Saharan dust reaching the Amazon Basin by transatlantic transport. Here, we have undertaken a comprehensive study of surface sediments from the Bodélé Depression and dust deposits (Chad, Niger) in order to characterize geochemically and isotopically (Sr, Nd and Pb isotopes) this dust source, and evaluate its importance in present and past African dust records. We similarly analyzed sedimentary deposits from the Amazonian lowlands in order to assess postulated accumulation of African mineral dust in the Amazon Basin, as well as its possible impact in fertilizing the Amazon rainforest. Our results identify distinct sources of different ages and provenance in the Bodélé Depression versus the Amazon Basin, effectively ruling out an origin for the Amazonian deposits, such as the Belterra Clay Layer, by long-term deposition of Bodélé Depression material. Similarly, no evidence for contributions from other potential source areas is provided by existing isotope data (Sr, Nd) on Saharan dusts. Instead, the composition of these Amazonian deposits is entirely consistent with derivation from in-situ weathering and erosion of the Precambrian Amazonian craton, with little, if any, Andean contribution. In the Amazon Basin, the mass accumulation rate of eolian dust is only around one-third of the vertical erosion rate in shield areas, suggesting that Saharan dust is “consumed” by tropical weathering, contributing nutrients and stimulating plant growth, but never accumulates as such in the Amazon Basin. The chemical and isotope compositions found in the Bodélé Depression are varied at the local scale, and have contrasting signatures in the “silica-rich” dry lake-bed sediments and in the “calcium-rich” mixed diatomites and surrounding sand material. This unexpected finding implies that the Bodélé Depression material is not “pre-mixed” at the source to provide a homogeneous source of dust. Rather, different isotope signatures can be emitted depending on subtle vagaries of dust-producing events. Our characterization of the Bodélé Depression components indicate that the Bodélé “calcium-rich” component, identified here, is most likely released via eolian processes of sand grain saltation and abrasion and may be significant in the overall global budget of dusts carried out by the Harmattan low-level jet during the winter.
Resumo:
Previous studies have shown that collective property rights offer higher flexibility than individual property and improve sustainable community-based forest management. Our case study, carried out in the Beni department of Bolivia, does not contradict this assertion, but shows that collective rights have been granted in areas where ecological contexts and market facilities were less favourable to intensive land use. Previous experiences suggest investigating political processes in order to understand the criteria according to which access rights were distributed. Based on remote sensing and on a multi-level land governance framework, our research confirms that land placed under collective rights, compared to individual property, is less affected by deforestation among Andean settlements. However, analysis of the historical process of land distribution in the area shows that the distribution of property rights is the result of a political process based on economic, spatial, and environmental strategies that are defined by multiple stakeholders. Collective titles were established in the more remote areas and distributed to communities with lower productive potentialities. Land rights are thus a secondary factor of forest cover change which results from diverse political compromises based on population distribution, accessibility, environmental perceptions, and expected production or extraction incomes.
Resumo:
Tropical wetlands are estimated to represent about 50% of the natural wetland methane (CH4) emissions and explain a large fraction of the observed CH4 variability on timescales ranging from glacial–interglacial cycles to the currently observed year-to-year variability. Despite their importance, however, tropical wetlands are poorly represented in global models aiming to predict global CH4 emissions. This publication documents a first step in the development of a process-based model of CH4 emissions from tropical floodplains for global applications. For this purpose, the LPX-Bern Dynamic Global Vegetation Model (LPX hereafter) was slightly modified to represent floodplain hydrology, vegetation and associated CH4 emissions. The extent of tropical floodplains was prescribed using output from the spatially explicit hydrology model PCR-GLOBWB. We introduced new plant functional types (PFTs) that explicitly represent floodplain vegetation. The PFT parameterizations were evaluated against available remote-sensing data sets (GLC2000 land cover and MODIS Net Primary Productivity). Simulated CH4 flux densities were evaluated against field observations and regional flux inventories. Simulated CH4 emissions at Amazon Basin scale were compared to model simulations performed in the WETCHIMP intercomparison project. We found that LPX reproduces the average magnitude of observed net CH4 flux densities for the Amazon Basin. However, the model does not reproduce the variability between sites or between years within a site. Unfortunately, site information is too limited to attest or disprove some model features. At the Amazon Basin scale, our results underline the large uncertainty in the magnitude of wetland CH4 emissions. Sensitivity analyses gave insights into the main drivers of floodplain CH4 emission and their associated uncertainties. In particular, uncertainties in floodplain extent (i.e., difference between GLC2000 and PCR-GLOBWB output) modulate the simulated emissions by a factor of about 2. Our best estimates, using PCR-GLOBWB in combination with GLC2000, lead to simulated Amazon-integrated emissions of 44.4 ± 4.8 Tg yr−1. Additionally, the LPX emissions are highly sensitive to vegetation distribution. Two simulations with the same mean PFT cover, but different spatial distributions of grasslands within the basin, modulated emissions by about 20%. Correcting the LPX-simulated NPP using MODIS reduces the Amazon emissions by 11.3%. Finally, due to an intrinsic limitation of LPX to account for seasonality in floodplain extent, the model failed to reproduce the full dynamics in CH4 emissions but we proposed solutions to this issue. The interannual variability (IAV) of the emissions increases by 90% if the IAV in floodplain extent is accounted for, but still remains lower than in most of the WETCHIMP models. While our model includes more mechanisms specific to tropical floodplains, we were unable to reduce the uncertainty in the magnitude of wetland CH4 emissions of the Amazon Basin. Our results helped identify and prioritize directions towards more accurate estimates of tropical CH4 emissions, and they stress the need for more research to constrain floodplain CH4 emissions and their temporal variability, even before including other fundamental mechanisms such as floating macrophytes or lateral water fluxes.