1000 resultados para Aletsch Glacier, Bernese Alps, Switzerland
Resumo:
With full-waveform (FWF) lidar systems becoming increasingly available from different commercial manufacturers, the possibility for extracting physical parameters of the scanned surfaces in an area-wide sense, as addendum to their geometric representation, has risen as well. The mentioned FWF systems digitize the temporal profiles of the transmitted laser pulse and of its backscattered echoes, allowing for a reliable determination of the target distance to the instrument and of physical target quantities by means of radiometric calibration, one of such quantities being the diffuse Lambertian reflectance. The delineation of glaciers is a time-consuming task, commonly performed manually by experts and involving field trips as well as image interpretation of orthophotos, digital terrain models and shaded reliefs. In this study, the diffuse Lambertian reflectance was compared to the glacier outlines mapped by experts. We start the presentation with the workflow for analysis of FWF data, their direct georeferencing and the calculation of the diffuse Lambertian reflectance by radiometric calibration; this workflow is illustrated for a large FWF lidar campaign in the Ötztal Alps (Tyrol, Austria), operated with an Optech ALTM 3100 system. The geometric performance of the presented procedure was evaluated by means of a relative and an absolute accuracy assessment using strip differences and orthophotos, resp. The diffuse Lambertian reflectance was evaluated at two rock glaciers within the mentioned lidar campaign. This feature showed good performance for the delineation of the rock glacier boundaries, especially at their lower parts.
Resumo:
In February of 1983 a new terrestrial photogrammetric survey of Lewis Glacier (0° 9' S) has been made, from which the present topographic map has been produced in a scale of 1:5000. Simultaneously a survey of 1963 was evaluated giving a basis for computations of area and volume changes over the 20 year period: Lewis Glacier has lost 22 % of its area and 50 % of its volume. Based on maps and field observations of moraines 10 different stages were identified. Changes of area and volume can be determined for the periods after 1890, two older, undated stages are presumed to be of Little Ice Age-origin. Moderate losses from 1890 to 1920 were followed by strong, uninterrupted retreat up to present. In this respect Lewis Glacier behaves as all other equatorial glaciers that were closer examined. Compared to alpine glaciers the development was similar up to 1950. In the following years, however, the glaciers of the Alps gained mass and advanced while Lewis Glacier experienced its strongest losses from 1974 to 1983.
Resumo:
In a continuation of Richard Finsterwalder's work of 1950 eight selected glaciers in the Eastern Alps haye been photogrammetrically surveyed and mapped on a scale of 1: 10,000 in the years 1959 and 1969 in order to establish arecord of glacier variation. From a comparison of isohypses of the 1950, 1959 and 1969 surveys the height changes of the glacier surfaces have been determined for approximately two decades. This yielded an average raise of 0,1 m per year, while an average sinking of glacier surfaces of 0.6 m per year had been found for the period 1920-1950.
Resumo:
Changes in glaciers and ice caps provide some of the clearest evidence of climate change, and as such they constitute key variables for early detection strategies in global climate-related observations. These changes have impacts on global sea level fluctuations, the regional to local natural hazard situation, as well as on societies dependent on glacier meltwater. Internationally coordinated collection and publication of standardised information about ongoing glacier changes was initiated back in 1894. The compiled data sets on the global distribution and changes in glaciers and ice caps provide the backbone of the numerous scientific publications on the latest findings about surface ice on land. Since the very beginning, the compiled data has been published by the World Glacier Monitoring Service and its predecessor organisations. However, the corresponding data tables, formats and meta-data are mainly of use to specialists.
Resumo:
The extent of snow cover at the end of the ablation season on glaciers in the Tyrolean Alps in 1972 and 1973 was determined from Landsat-1 Multispectral Scanner (MSS) images. For snovv mapping the MSS-images with a ground resolution of 80 meters were enlarged to a scale of 1: 100.000 by photographic methods. Different appearance of snow cover in the 4 MSS-channels is discussed in connection with ground truth control. The accuracy of snow and ice mapping from Landsat images was checked on 15 glaciers with an area from 1 to 10 km2 by aerial photography and/or ground truth control. These comparisons imply the usefulness of Landsat images for snow mapping on glaciers of a few square kilometers. The altitude of the equilibrium line was determined from Landsat images for 53 glaciers in the Tyrolean Alps. The regional differences in the equilibrium line altitude correspond to the regional precipitation patterns. The equilibrium line was identical with the snow line at the end of the budget year 1971/1972; therefore it was possible to determine the equilibrium line from satellite images. For 1968/69 the equilibrium line was mapped from aerial photographs for several glaciers. In 1972/73 mass balance was strongly negative and the equilibrimn line was within the firn area of the glaciers. Therefore it was not possible to distinguish between accumulation and ablation areas from the Landsat images of September 1973; however, snow and ice areas could be olearly differentiated. The ratios of accumulation area 01' snow area to the total area of the glaciers were determineel from satellite images and aerial photography separately for aelvancing anel for retreating glaciers and were relateel to the mass balance. In the budget years 1968/69 and 1972/73 with negative mass balance the accumulation area ratios of the advancing glacien; were olearly different from the ratios of the retreating glaciers, in 1971/72 with positive 01' balanced mass budget the differences between advancing and retreating glaciers were not significant.