976 resultados para Airway Remodeling
Resumo:
Obstructive sleep apnea (OSA) has been associated with an increased risk of atherothrombotic events. A prothrombotic state might partially explain this link. This study investigated OSA patients' day/night rhythm of several prothrombotic markers and their potential changes with therapeutic continuous positive airway pressure (CPAP).
Resumo:
Long-term endurance sports are associated with atrial remodeling and atrial arrhythmias. More importantly, high-level endurance training may promote right ventricular (RV) dysfunction and complex ventricular arrhythmias. We investigated the long-term consequences of marathon running on cardiac remodeling as a potential substrate for arrhythmias with a focus on the right heart. We invited runners of the 2010 Grand Prix of Bern, a 10-mile race. Of 873 marathon and nonmarathon runners who applied, 122 (61 women) entered the final analysis. Subjects were stratified according to former marathon participations: control group (nonmarathon runners, n = 34), group 1 (1 marathon to 5 marathons, mean 2.7, n = 46), and group 2 (≥6 marathons, mean 12.8, n = 42). Mean age was 42 ± 7 years. Results were adjusted for gender, age, and lifetime training hours. Right and left atrial sizes increased with marathon participations. In group 2, right and left atrial enlargements were present in 60% and 74% of athletes, respectively. RV and left ventricular (LV) dimensions showed no differences among groups, and RV or LV dilatation was present in only 2.4% or 4.3% of marathon runners, respectively. In multiple linear regression analysis, marathon participation was an independent predictor of right and left atrial sizes but had no effect on RV and LV dimensions and function. Atrial and ventricular ectopic complexes during 24-hour Holter monitoring were low and equally distributed among groups. In conclusion, in nonelite athletes, marathon running was not associated with RV enlargement, dysfunction, or ventricular ectopy. Marathon running promoted biatrial remodeling.
Resumo:
Background Allergen-containing subpollen particles (SPP) are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP)-D. The aim of the present study was to investigate the influence of SP-D in a complex three-dimensional human epithelial airway model, which simulates the most important barrier functions of the epithelial airway. The uptake of SPP as well as the secretion of pro-inflammatory cytokines was investigated. Methods SPP were isolated from timothy grass and subsequently fluorescently labeled. A human epithelial airway model was built by using human Type II-pneumocyte like cells (A549 cells), human monocyte derived macrophages as well as human monocyte derived dendritic cells. The epithelial cell model was incubated with SPP in the presence and absence of surfactant protein D. Particle uptake was evaluated by confocal microscopy and advanced computer-controlled analysis. Finally, human primary CD4+ T-Cells were added to the epithelial airway model and soluble mediators were measured by enzyme linked immunosorbent assay or bead array. Results SPP were taken up by epithelial cells, macrophages, and dendritic cells. This uptake coincided with secretion of pro-inflammatory cytokines and chemokines. SP-D modulated the uptake of SPP in a cell type specific way (e.g. increased number of macrophages and epithelial cells, which participated in allergen particle uptake) and led to a decreased secretion of pro-inflammatory cytokines. Conclusion These results display a possible mechanism of how SP-D can modulate the inflammatory response to inhaled allergen.
Resumo:
Clinical and epidemiological studies show a close association between obesity and the risk of asthma development. The underlying cause-effect relationship between metabolism, innate and adaptive immunity, and inflammation remains to be elucidated.
Resumo:
We studied the ability of 4 single-breath gas washout (SBW) tests to measure immediate effects of airway clearance in children with CF.
Resumo:
Abstract Background: Aerosol therapy in preterm infants is challenging, as a very small proportion of the drug deposits in the lungs. Aim: Our aim was to compare efficiency of standard devices with newer, more efficient aerosol delivery devices. Methods: Using salbutamol as a drug marker, we studied two prototypes of the investigational eFlow(®) nebulizer for babies (PARI Pharma GmbH), a jet nebulizer (Intersurgical(®) Cirrus(®)), and a pressurized metered dose inhaler (pMDI; GSK) with a detergent-coated holding chamber (AeroChamber(®) MV) in the premature infant nose throat-model (PrINT-model) of a 32-week preterm infant (1,750 g). A filter or an impactor was placed below the infant model's "trachea" to capture the drug dose or particle size, respectively, that would have been deposited in the lung. Results: Lung dose (percentage of nominal dose) was 1.5%, 6.8%, and 18.0-20.6% for the jet nebulizer, pMDI-holding chamber, and investigational eFlow nebulizers, respectively (p<0.001). Jet nebulizer residue was 69.4% and 10.7-13.9% for the investigational eFlow nebulizers (p<0.001). Adding an elbow extension between the eFlow and the model significantly lowered lung dose (p<0.001). A breathing pattern with lower tidal volume decreased deposition in the PrINT-model and device residue (p<0.05), but did not decrease lung dose. Conclusions: In a model for infant aerosol inhalation, we confirmed low lung dose using jet nebulizers and pMDI-holding chambers, whereas newer, more specialized vibrating membrane devices, designed specifically for use in preterm infants, deliver up to 20 times more drug to the infant's lung.
Resumo:
Video-laryngoscopes are marketed for intubation in difficult airway management. They provide a better view of the larynx and may facilitate tracheal intubation, but there is no adequately powered study comparing different types of video-laryngoscopes in a difficult airway scenario or in a simulated difficult airway situation.
Resumo:
Post-transplant bronchiolitis obliterans, also called bronchiolitis obliterans syndrome, affects up to 50-60% of patients who survive 5 yr after surgery according to its clinical definition, which is based on the degree of obstructive airway disease. Alloimmune-independent and -dependent mechanisms produce injuries and inflammation of epithelial cells and subepithelial structures, leading to aberrant tissue repair. The triggering of innate immunity by various infections or chemical injuries after, for example, gastroesophageal reflux, may lead to the release of danger signals that are able to activate dendritic cells, a crucial link with adaptive immunity. Inflammation can also increase the expression and display of major histocompatibility alloantigens and thus favor the initiation of rejection episodes. These phenomena may be limited in time and location or may be protracted. Reducing the risk of alloimmune-independent factors may be as important as treating acute episodes of lung rejection. Excessive immunosuppression may be deleterious by increasing the risk of infection, thereby triggering innate and adaptive immunity. New potential therapeutic targets are emerging from the research performed on leukotriene receptors, chemokine receptors, and growth factors. Neutralizing these molecules reduces the initial mononuclear and polynuclear infiltrates or the subsequent fibroproliferative process and the neovascular changes, feeding this process.
Resumo:
A prothrombotic state may contribute to the elevated cardiovascular risk in patients with obstructive sleep apnea (OSA). We investigated the relationship between apnea severity and hemostasis factors and effect of continuous positive airway pressure (CPAP) treatment on hemostatic activity. We performed full overnight polysomnography in 44 OSA patients (mean age 47+/-10 years), yielding apnea-hypopnea index (AHI) and mean nighttime oxyhemoglobin saturation (SpO2) as indices of apnea severity. For treatment, subjects were double-blind randomized to 2 weeks of either therapeutic CPAP (n = 18), 3 l/min supplemental nocturnal oxygen (n = 16) or placebo-CPAP (<1 cm H2O) (n = 10). Levels of von Willebrand factor antigen (VWF:Ag), soluble tissue factor (sTF), D-dimer, and plasminogen activator inhibitor (PAI)-1 antigen were measured in plasma pre- and posttreatment. Before treatment, PAI-1 was significantly correlated with AHI (r = 0.47, p = 0.001) and mean nighttime SpO2 (r = -0.32, p = 0.035), but these OSA measures were not significantly related with VWF:Ag, sTF, and D-dimer. AHI was a significant predictor of PAI-1 (R2 = 0.219, standardized beta = 0.47, p = 0.001), independent of mean nighttime SpO2, body mass index (BMI), and age. A weak time-by-treatment interaction for PAI-1 was observed (p = 0.041), even after adjusting for age, BMI, pre-treatment AHI, and mean SpO2 (p = 0.046). Post hoc analyses suggested that only CPAP treatment was associated with a decrease in PAI-1 (p = 0.039); there were no changes in VWF:Ag, sTF, and D-dimer associated with treatment with placebo-CPAP or with nocturnal oxygen. Apnea severity may be associated with impairment in the fibrinolytic capacity. To the extent that our sample size was limited, the observation that CPAP treatment led to a decrease in PAI-1 in OSA must be regarded as tentative.