978 resultados para Adipose tissues Differentiation
Resumo:
Embryonic midbrain and hindbrain are structures which will give rise to brain stem and cerebellum in the adult vertebrates. Brain stem contains several nuclei which are essential for the regulation of movements and behavior. They include serotonin-producing neurons, which develop in the hindbrain, and dopamine-producing neurons in the ventral midbrain. Degeneration and malfunction of these neurons leads to various neurological disorders, including schizophrenia, depression, Alzheimer s, and Parkinson s disease. Thus, understanding their development is of high interest. During embryogenesis, a local signaling center called isthmic organizer regulates the development of midbrain and anterior hindbrain. It secretes peptides belonging to fibroblast growth factor (FGF) and Wingless/Int (Wnt) families. These factors bind to their receptors in the surrounding tissues, and activate various downstream signaling pathways which lead to alterations in gene expression. This in turn affects the various developmental processes in this region, such as proliferation, survival, patterning, and neuronal differentiation. In this study we have analyzed the role of FGFs in the development of midbrain and anterior hindbrain, by using mouse as a model organism. We show that FGF receptors cooperate to receive isthmic signals, and cell-autonomously promote cell survival, proliferation, and maintenance of neuronal progenitors. FGF signaling is required for the maintenance of Sox3 and Hes1 expression in progenitors, and Hes1 in turn suppresses the activity of proneural genes. Loss of Hes1 is correlated with increased cell cycle exit and premature neuronal differentiation. We further demonstrate that FGF8 protein forms an antero-posterior gradient in the basal lamina, and might enter the neuronal progenitors via their basal processes. We also analyze the impact of FGF signaling on the various neuronal nuclei in midbrain and hindbrain. Rostral serotonergic neurons appear to require high levels of FGF signaling in order to develop. In the absence of FGF signaling, these neurons are absent. We also show that embryonic meso-diencephalic dopaminergic domain consists of two populations in the anterior-posterior direction, and that these populations display different molecular profiles. The anterior diencephalic domain appears less dependent on isthmic FGFs, and lack several genes typical of midbrain dopaminergic neurons, such as Pitx3 and DAT. In Fgfr compound mutants, midbrain dopaminergic neurons begin to develop but soon adopt characteristics which highly resemble those of diencephalic dopaminergic precursors. Our results indicate that FGF signaling regulates patterning of these two domains cell-autonomously.
Resumo:
Failure to repair DNA double-strand breaks (DSBs) can lead to cell death or cancer. Although nonhomologous end joining (NHEJ) has been studied extensively in mammals, little is known about it in primary tissues. Using oligomeric DNA mimicking endogenous DSBs, NHEJ in cell-free extracts of rat tissues were studied. Results show that efficiency of NHEJ is highest in lungs compared to other somatic tissues. DSBs with compatible and blunt ends joined without modifications, while noncompatible ends joined with minimal alterations in lungs and testes. Thymus exhibited elevated joining, followed by brain and spleen, which could be correlated with NHEJ gene expression. However, NHEJ efficiency was poor in terminally differentiated organs like heart, kidney and liver. Strikingly, NHEJ junctions from these tissues also showed extensive deletions and insertions. Hence, for the first time, we show that despite mode of joining being generally comparable, efficiency of NHEJ varies among primary tissues of mammals.
Resumo:
The relative regulatory roles of the pituitary gonadotropins, luteinizing hormone and follicle stimulating hormone in the spermatogonial proliferation has been studied using specific antibodies against these hormones in the immature rats. Immunoneutralization of luteinizing hormone for 7 days resulted in significant reduction in tetraploid cells and total absence of haploid cells, while there was a relative increase in the diploid population. This was also accomopanied by a decrease in spermatogonial proliferation as indicated by a decrease in [H-3] thymidine incorporation into DNA by purified spermatogonia. Administration bf follicle stimulating hormone als for 7 days also caused a significant decrease in the rate of spermatogonial proliferation. Withdrawal of follicle stimulating hormone led to a significant reduction in tetraploid and haploid cells However interestingly, it failed to totally abolish the appearance of these cells. Administration of testosterone (3mg/day/rat) for 2 days along with the gonadotropin a/s could partially reverse the effect on spermatogonial proliferation. It is concluded that (i) both luteinizing hormone and follicle stimulating hormone are involved in spermatogonial proliferation, (ii) lack of testosterone consequent of the neutralization of luteinizing hormone prevented the entry of spermatogonial cells into meiosis, (iii) testosterone may be involved in spermatogonial proliferation providing a mitotic signal and (v) both follicle stimulating hormone and testosterone act synergistically and lack of any one of the hormones results in impairment of spermatogonial proliferation.
Resumo:
Guanylyl cyclase C (GC-C) is a membrane-associated form of guanylyl cyclase and serves as the receptor for the heat-stable enterotoxin (ST) peptide and endogenous ligands guanylin, uroguanylin, and lymphoguanylin. The major site of expression of GC-C is the intestinal epithelial cell, although GC-C is also expressed in extraintestinal tissue such as the kidney, airway epithelium, perinatal liver, stomach, brain, and adrenal glands. Binding of ligands to GC-C leads to accumulation of intracellular cGMP, the activation of protein kinases G and A, and phosphorylation of the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that regulates salt and water secretion. We examined the expression of GC-C and its ligands in various tissues of the reproductive tract of the rat. Using reverse transcriptase and the polymerase chain reaction, we demonstrated the presence of GC-C, uroguanylin, and guanylin mRNA in both male and female reproductive organs. Western blot analysis using a monoclonal antibody to GC-C revealed the presence of differentially glycosylated forms of GC-C in the caput and cauda epididymis. Exogenous addition of uroguanylin to minced epididymal tissue resulted in cGMP accumulation, suggesting an autocrine or endocrine activation of GC-C in this tissue. Immunohistochemical analyses demonstrated expression of GC-C in the tubular epithelial cells of both the caput epididymis and cauda epididymis. Our results suggest that the GC-C signaling pathway could converge on CFTR in the epididymis and perhaps control fluid and ion balance for optimal sperm maturation and storage in this tissue.
Resumo:
The mathematical model for diffuse fluorescence spectroscopy/imaging is represented by coupled partial differential equations (PDEs), which describe the excitation and emission light propagation in soft biological tissues. The generic closed-form solutions for these coupled PDEs are derived in this work for the case of regular geometries using the Green's function approach using both zero and extrapolated boundary conditions. The specific solutions along with the typical data types, such as integrated intensity and the mean time of flight, for various regular geometries were also derived for both time-and frequency-domain cases. (C) 2013 Optical Society of America
Resumo:
The analytical solutions for the coupled diffusion equations that are encountered in diffuse fluorescence spectroscopy/ imaging for regular geometries were compared with the well-established numerical models, which are based on the finite element method. Comparison among the analytical solutions obtained using zero boundary conditions and extrapolated boundary conditions (EBCs) was also performed. The results reveal that the analytical solutions are in close agreement with the numerical solutions, and solutions obtained using EBCs are more accurate in obtaining the mean time of flight data compared to their counterpart. The analytical solutions were also shown to be capable of providing bulk optical properties through a numerical experiment using a realistic breast model. (C) 2013 Optical Society of America
Resumo:
Theterahertz (THz) propagation in real tissues causes heating as with any other electromagnetic radiation propagation. A finite-element (FE) model that provides numerical solutions to the heat conduction equation coupled with realistic models of tissues is employed in this study to compute the temperature raise due to THz propagation. The results indicate that the temperature raise is dependent on the tissue type and is highly localized. The developed FE model was validated through obtaining solutions for the steady-state case and showing that they were in good agreement with the analytical solutions. These types of models can also enable computation of specific absorption rates, which are very critical in planning/setting up experiments involving biological tissues.
Resumo:
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.
Resumo:
In designing and developing various biomaterials, the influence of substrate properties, like surface topography, stiffness and wettability on the cell functionality has been investigated widely. However, such study to probe into the influence of the substrate conductivity on cell fate processes is rather limited. In order to address this issue, spark plasma sintered HA-CaTiO3 (Hydroxyapatite-Calcium titanate) has been used as a model material system to showcase the effect of varying conductivity on cell functionality. Being electroactive in nature, mouse myoblast cells (C2C12) were selected as a model cell line in this study. It was inferred that myoblast adhesion/growth systematically increases with substrate conductivity due to CaTiO3 addition to HA. Importantly, parallel arrangement of myoblast cells on higher CaTiO3 containing substrates indicate that self-adjustable cell patterning can be achieved on conductive biomaterials. Furthermore, enhanced myoblast assembly and myotube formation were recorded after 5 days of serum starvation. Overall, the present study conclusively establishes the positive impact of the substrate conductivity towards cell proliferation and differentiation as well as confirms the efficacy of HA-CaTiO3 biocomposites as conductive platforms to facilitate the growth, orientation and fusion of myoblasts, even when cultured in the absence of external electric field.
Resumo:
Stem cells in cell based therapy for cardiac injury is being potentially considered. However, genetic regulatory networks involved in cardiac differentiation are not clearly understood. Among stem cell differentiation models, mouse P19 embryonic carcinoma (EC) cells, are employed for studying (epi)genetic regulation of cardiomyocyte differentiation. Here, we comprehensively assessed cardiogenic differentiation potential of 5-azacytidine (Aza) on P19 EC-cells, associated gene expression profiles and the changes in DNA methylation, histone acetylation and activated-ERK signaling status during differentiation. Initial exposure of Aza to cultured EC-cells leads to an efficient (55%) differentiation to cardiomyocyte-rich embryoid bodies with a threefold (16.8%) increase in the cTnI(+) cardiomyocytes. Expression levels of cardiac-specific gene markers i.e., Isl-1, BMP-2, GATA-4, and alpha-MHC were up-regulated following Aza induction, accompanied by differential changes in their methylation status particularly that of BMP-2 and alpha-MHC. Additionally, increases in the levels of acetylated-H3 and pERK were observed during Aza-induced cardiac differentiation. These studies demonstrate that Aza is a potent cardiac inducer when treated during the initial phase of differentiation of mouse P19 EC-cells and its effect is brought about epigenetically and co-ordinatedly by hypo-methylation and histone acetylation-mediated hyper-expression of cardiogenesis-associated genes and involving activation of ERK signaling.
Resumo:
The growth of neuroblastoma (N2a) and Schwann cells has been explored on polymer derived carbon substrates of varying micro and nanoscale geometries: resorcinol-formaldehyde (RE) gel derived carbon films and electrospun nanofibrous (similar to 200 nm diameter) mat and SU-8 (a negative photoresist) derived carbon micro-patterns. MTT assay and complementary lactate dehydrogenase (LDH) assay established cytocompatibility of RE derived carbon films and fibers over a period of 6 days in culture. The role of length scale of surface patterns in eliciting lineage-specific adaptive response along, across and on the interspacing between adjacent micropatterns (i.e., ``on'', ``across'' and ``off'') has been assayed. Textural features were found to affect 3',5'-cyclic AMP sodium salt-induced neurite outgrowth, over a wide range of length scales: from similar to 200 nm (carbon fibers) to similar to 60 mu m (carbon patterns). Despite their innate randomness, carbon nanofibers promoted preferential differentiation of N2a cells into neuronal lineage, similar to ordered micro-patterns. Our results, for the first time, conclusively demonstrate the potential of RE-gel and SU-8 derived carbon substrates as nerve tissue engineering platforms for guided proliferation and differentiation of neural cells in vitro. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.
Resumo:
This commentary discusses and summarizes the key highlights of our recently reported work entitled ``Neuronal Differentiation of Embryonic Stem Cell Derived Neuronal Progenitors Can Be Regulated by Stretchable Conducting Polymers.'' The prospect of controlling the mechanical-rigidity and the surface conductance properties offers a unique combination for tailoring the growth and differentiation of neuronal cells. We emphasize the utility of transparent elastomeric substrates with coatings of electrically conducting polymer to realize the desired substrate-characteristics for cellular development processes. Our study showed that neuronal differentiation from ES cells is highly influenced by the specific substrates on which they are growing. Thus, our results provide a better strategy for regulated neuronal differentiation by using such functional conducting surfaces.