822 resultados para Adaptive Control Design
Resumo:
Wireless networked control systems (WNCSs) have been increasingly deployed in industrial applications. As they require timely data packet transmissions, it is difficult to make efficient use of the limited channel resources, particularly in contention based wireless networks in the layered network architecture. Aiming to maintain the WNCSs under critical real-time traffic condition at which the WNCSs marginally meet the real-time requirements, a cross-layer design (CLD) approach is presented in this paper to adaptively adjust the control period to achieve improved channel utilization while still maintaining effective and timely packet transmissions. The effectiveness of the proposed approach is demonstrated through simulation studies.
Resumo:
Scaffolds play a pivotal role in tissue engineering, promoting the synthesis of neo extra-cellular matrix (ECM), and providing temporary mechanical support for the cells during tissue regeneration. Advances introduced by additive manufacturing techniques have significantly improved the ability to regulate scaffold architecture, enhancing the control over scaffold shape and porosity. Thus, considerable research efforts have been devoted to the fabrication of 3D porous scaffolds with optimized micro-architectural features. This chapter gives an overview of the methods for the design of additively manufactured scaffolds and their applicability in tissue engineering (TE). Along with a survey of the state of the art, the Authors will also present a recently developed method, called Load-Adaptive Scaffold Architecturing (LASA), which returns scaffold architectures optimized for given applied mechanical loads systems, once the specific stress distribution is evaluated through Finite Element Analysis (FEA).
Resumo:
As Unmanned Aircraft Systems (UAS) grow in complexity, and their level of autonomy increases|moving away from the concept of a remotely piloted systems and more towards autonomous systems|there is a need to further improve reliability and tolerance to faults. The traditional way to accommodate actuator faults is by using standard control allocation techniques as part of the flight control system. The allocation problem in the presence of faults often requires adding constraints that quantify the maximum capacity of the actuators. This in turn requires on-line numerical optimisation. In this paper, we propose a framework for joint allocation and constrained control scheme via vector input scaling. The actuator configuration is used to map actuator constraints into the space of the aircraft generalised forces, which are the magnitudes demanded by the light controller. Then by constraining the output of controller, we ensure that the allocation function always receive feasible demands. With the proposed framework, the allocation problem does not require numerical optimisation, and since the controller handles the constraints, there is not need to implement heuristics to inform the controller about actuator saturation.
Resumo:
Purpose: We examine the interaction between trait resilience and control in predicting coping and performance. Drawing on a person–environment fit perspective, we hypothesized resilient individuals would cope and perform better in demanding work situations when control was high. In contrast, those low in resilience would cope and perform better when control was low. Recognizing the relationship between trait resilience and performance also could be indirect, adaptive coping was examined as a mediating mechanism through which high control enables resilient individuals to demonstrate better performance. Methodology: In Study 1 (N = 78) and Study 2 (N = 94), participants completed a demanding inbox task in which trait resilience was measured and high and low control was manipulated. Study 3 involved surveying 368 employees on their trait resilience, control, and demand at work (at Time 1), and coping and performance 1 month later at Time 2. Findings: For more resilient individuals, high control facilitated problem-focused coping (Study 1, 2, and 3), which was indirectly associated with higher subjective performance (Study 1), mastery (Study 2), adaptive, and proficient performance (Study 3). For more resilient individuals, high control also facilitated positive reappraisal (Study 2 and 3), which was indirectly associated with higher adaptive and proficient performance (Study 3). Implications: Individuals higher in resilience benefit from high control because it enables adaptive coping. Originality/value: This research makes two contributions: (1) an experimental investigation into the interaction of trait resilience and control, and (2) investigation of coping as the mechanism explaining better performance.
Resumo:
This work deals with estimators for predicting when parametric roll resonance is going to occur in surface vessels. The roll angle of the vessel is modeled as a second-order linear oscillatory system with unknown parameters. Several algorithms are used to estimate the parameters and eigenvalues of the system based on data gathered experimentally on a 1:45 scale model of a tanker. Based on the estimated eigenvalues, the system predicts whether or not parametric roll occurred. A prediction accuracy of 100% is achieved for regular waves, and up to 87.5% for irregular waves.
Resumo:
This paper details the initial design and planning of a Field Programmable Gate Array (FPGA) implemented control system that will enable a path planner to interact with a MAVLink based flight computer. The design is aimed at small Unmanned Aircraft Vehicles (UAV) under autonomous operation which are typically subject to constraints arising from limited on-board processing capabilities, power and size. An FPGA implementation for the de- sign is chosen for its potential to address such limitations through low power and high speed in-hardware computation. The MAVLink protocol offers a low bandwidth interface for the FPGA implemented path planner to communicate with an on-board flight computer. A control system plan is presented that is capable of accepting a string of GPS waypoints generated on-board from a previously developed in- hardware Genetic Algorithm (GA) path planner and feeding them to the open source PX4 autopilot, while simultaneously respond- ing with flight status information.
Resumo:
The inspection of marine vessels is currently performed manually. Inspectors use tools (e.g. cameras and devices for non-destructive testing) to detect damaged areas, cracks, and corrosion in large cargo holds, tanks, and other parts of a ship. Due to the size and complex geometry of most ships, ship inspection is time-consuming and expensive. The EU-funded project INCASS develops concepts for a marine inspection robotic assistant system to improve and automate ship inspections. In this paper, we introduce our magnetic wall–climbing robot: Marine Inspection Robotic Assistant (MIRA). This semiautonomous lightweight system is able to climb a vessels steel frame to deliver on-line visual inspection data. In addition, we describe the design of the robot and its building subsystems as well as its hardware and software components.
Resumo:
This paper details the design and performance assessment of a unique collision avoidance decision and control strategy for autonomous vision-based See and Avoid systems. The general approach revolves around re-positioning a collision object in the image using image-based visual servoing, without estimating range or time to collision. The decision strategy thus involves determining where to move the collision object, to induce a safe avoidance manuever, and when to cease the avoidance behaviour. These tasks are accomplished by exploiting human navigation models, spiral motion properties, expected image feature uncertainty and the rules of the air. The result is a simple threshold based system that can be tuned and statistically evaluated by extending performance assessment techniques derived for alerting systems. Our results demonstrate how autonomous vision-only See and Avoid systems may be designed under realistic problem constraints, and then evaluated in a manner consistent to aviation expectations.
Resumo:
Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest as smart materials for novel space-based telescope applications. Dimensional adjustments of adaptive thin polymer films are achieved via controlled charge deposition. Predicting their long-term performance requires a detailed understanding of the piezoelectric property changes that develop during space environmental exposure. The overall materials performance is governed by a combination of chemical and physical degradation processes occurring in low Earth orbit as established by our past laboratory-based materials performance experiments (see report SAND 2005-6846). Molecular changes are primarily induced via radiative damage, and physical damage from temperature and atomic oxygen exposure is evident as depoling, loss of orientation and surface erosion. The current project extension has allowed us to design and fabricate small experimental units to be exposed to low Earth orbit environments as part of the Materials International Space Station Experiments program. The space exposure of these piezoelectric polymers will verify the observed trends and their degradation pathways, and provide feedback on using piezoelectric polymer films in space. This will be the first time that PVDF-based adaptive polymer films will be operated and exposed to combined atomic oxygen, solar UV and temperature variations in an actual space environment. The experiments are designed to be fully autonomous, involving cyclic application of excitation voltages, sensitive film position sensors and remote data logging. This mission will provide critically needed feedback on the long-term performance and degradation of such materials, and ultimately the feasibility of large adaptive and low weight optical systems utilizing these polymers in space.
Resumo:
A gyrostabiliser control system and method for stabilising marine vessel motion based on precession information only. The control system employs an Automatic Gain Control (AGC) precession controller (60). This system operates with a gain factor that is always being gradually minimized so as to let the gyro flywheel (12) develop as much precession as possible - the higher the precession, the higher the roll stabilising moment. This continuous gain change provides adaptation to changes in sea state and sailing conditions. The system effectively predicts the likelihood of maximum precession being reached. Should this event be detected, then the gain is rapidly increased so as to provide a breaking precession torque. Once the event has passed, the system again attempts to gradually decrease the gain.
Resumo:
The UDP-glucuronosyltransferases (UGTs) are enzymes of the phase II metabolic system. These enzymes catalyze the transfer of α-D-glucuronic acid from UDP-glucuronic acid to aglycones bearing nucleophilic groups affording exclusively their corresponding β-D-glucuronides to render lipophilic endobiotics and xenobiotics more water soluble. This detoxification pathway aids in the urinary and biliary excretion of lipophilic compounds thus preventing their accumulation to harmful levels. The aim of this study was to investigate the effect of stereochemical and steric features of substrates on the glucuronidation catalyzed by UGTs 2B7 and 2B17. Furthermore, this study relates to the design and synthesis of novel, selective inhibitors that display high affinity for the key enzyme involved in drug glucuronidation, UGT2B7. The starting point for the development of inhibitors was to assess the influence of the stereochemistry of substrates on the UGT-catalyzed glucuronidation reaction. A set of 28 enantiomerically pure alcohols was subjected to glucuronidation assays employing the human UGT isoforms 2B7 and 2B17. Both UGT enzymes displayed high stereoselectivity, favoring the glucuronidation of the (R)-enantiomers over their respective mirror-image compounds. The spatial arrangement of the hydroxy group of the substrate determined the rate of the UGT-catalyzed reaction. However, the affinity of the enantiomeric substrates to the enzymes was not significantly influenced by the spatial orientation of the nucleophilic hydroxy group. Based on these results, a rational approach for the design of inhibitors was developed by addressing the stereochemical features of substrate molecules. Further studies showed that the rate of the enzymatic glucuronidation of substrates was also highly dependent on the steric demand in vicinity of the nucleophilic hydroxy group. These findings provided a rational approach to turn high-affinity substrates into true UGT inhibitors by addressing stereochemical and steric features of substrate molecules. The tricyclic sesquiterpenols longifolol and isolongifolol were identified as high-affinity substrates which displayed high selectivity for the UGT isoform 2B7. These compounds served therefore as lead structures for the design of potent and selective inhibitors for UGT2B7. Selective and potent inhibitors were prepared by synthetically modifying the lead compounds longifolol and isolongifolol taking stereochemical and steric features into account. The best inhibitor of UGT2B7, β-phenyllongifolol, displayed an inhibition constant of 0.91 nM.
Resumo:
Photovoltaic (PV) panels and electric domestic water heater with storage (DWH) are widely used in households in many countries. However, DWH should be explored as an energy storage mechanism before batteries when households have excess PV energy. Through a residential case study in Queensland, Australia, this paper presents a new optimized design and control solution to reduce water heating costs by utilizing existing DWH energy storage capacity and increasing PV self-consumption for water heating. The solution is produced by evaluating the case study energy profile and numerically maximizing the use of PV for DWH. A conditional probability matrix for different solar insolation and hot water usage days is developed to test the solution. Compared to other tariffs, this solution shows cost reduction from 20.8% to 63.3% This new solution could encourage solar households move to a more economical and carbon neutral water heating method.
Resumo:
Speed control of ac motors requires variable frequency, variable current, or variable voltage supply. Variable frequency supply can be obtained directly from a fixed frequency supply by using a frequency converter or from a dc source using inverters. In this paper a control technique for reference wave adaptive-current generation by modulating the inverter voltage is explained. Extension of this technique for three-phase induction-motor speed control is briefly explained. The oscillograms of the current waveforms obtained from the experimental setup are also shown.
Resumo:
A constant switching frequency current error space vector-based hysteresis controller for two-level voltage source inverter-fed induction motor (IM) drives is proposed in this study. The proposed controller is capable of driving the IM in the entire speed range extending to the six-step mode. The proposed controller uses the parabolic boundary, reported earlier, for vector selection in a sector, but uses simple, fast and self-adaptive sector identification logic for sector change detection in the entire modulation range. This new scheme detects the sector change using the change in direction of current error along the axes jA, jB and jC. Most of the previous schemes use an outer boundary for sector change detection. So the current error goes outside the boundary six times during sector change, in one cycle,, introducing additional fifth and seventh harmonic components in phase current. This may cause sixth harmonic torque pulsations in the motor and spread in the harmonic spectrum of phase voltage. The proposed new scheme detects the sector change fast and accurately eliminating the chance of introducing additional fifth and seventh harmonic components in phase current and provides harmonic spectrum of phase voltage, which exactly matches with that of constant switching frequency voltage-controlled space vector pulse width modulation (VC-SVPWM)-based two-level inverter-fed drives.