957 resultados para AXIAL DIVERGENCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Funding Financial support of this research by the Engineering and Physical Sciences Research Council (EPSRC/GR/L51348) and the British Ministry of Defence is gratefully acknowledged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we highlight the significance and need for conducting context-specific human resource management (HRM) research, by focusing on four critical themes. First, we discuss the need to analyze the convergence-divergence debate on HRM in Asia-Pacific. Next, we present an integrated framework, which would be very useful for conducting cross-national HRM research designed to focus on the key determinants of the dominant national HRM systems in the region. Following this, we discuss the critical challenges facing the HRM function in Asia-Pacific. Finally, we present an agenda for future research by presenting a series of research themes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the effect of foam core density and skin type on the behaviour of sandwich panels as structural beams tested in four-point bending and axially compressed columns of varying slenderness and skin thickness. Bio-composite unidirectional flax fibre-reinforced polymer (FFRP) is compared to conventional glass-FRP (GFRP) as the skin material used in conjunction with three polyisocyanurate (PIR) foam cores with densities of 32, 64 and 96 kg/m3. Eighteen 1000 mm long flexural specimens were fabricated and tested to failure comparing the effects of foam core density between three-layer FFRP skinned and single-layer GFRP skinned panels. A total of 132 columns with slenderness ratios (kLe/r) ranging from 22 to 62 were fabricated with single-layer GFRP skins, and one-, three-, and five-layer FFRP skins for each of the three foam core densities. The columns were tested to failure in concentric axial compression using pinned-end conditions to compare the effects of each material type and panel height. All specimens had a foam core cross-section of 100x50 mm with 100 mm wide skins of equal thickness. In both flexural and axial loading, panels with skins comprised of three FFRP layers showed equivalent strength to those with a single GFRP layer for all slenderness ratios and core densities examined. Doubling the core density from 32 to 64 kg/m3 and tripling the density to 96 kg/m3 led to flexural strength increases of 82 and 213%, respectively. Both FFRP and GFRP columns showed a similar variety of failure modes related to slenderness. Low slenderness of 22-25 failed largely due to localized single skin buckling, while those with high slenderness of 51-61 failed primarily by global buckling followed by secondary skin buckling. Columns with intermediate slenderness experienced both localized and global failure modes. High density foam cores more commonly exhibited core shear failure. Doubling the core density of the columns resulted in peak axial load increases, across all slenderness ratios, of 73, 56, 72 and 71% for skins with one, three and five FFRP layers, and one GFRP layer, respectively. Tripling the core density resulted in respective peak load increases of 116, 130, 176 and 170%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher–catcher scenario, anisotropy in neutron emission was studied for the deuterium–deuterium fusion reaction. Simulation results are consistent with the narrow-divergence ( ∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Otto-von-Guericke-Universität Magdeburg, Fakultät für Verfahrens- und Systemtechnik, Dissertation, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias de la Visión).-- Universidad de La Salle. Maestría en Ciencias de la Visión, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the study is to identify the 3D behaviour of an adhesive in an assembly, and to take into account the effect of ageing in a marine environment. To that end, three different tests were employed. Gravimetric analyses were used to determine the water diffusion kinetics in the adhesive. Bulk tensile tests were performed to highlight the effects of humid ageing on the adhesive behaviour. Modified Arcan tests were performed for several ageing times to obtain the experimental database which was necessary to identify constitutive models. A Mahnken-Schlimmer type model was determined for the unaged state according to a procedure developed in a previous study. This identification used inverse techniques. It was based on the unaged modified Arcan results and on a coupling between an optimisation routine and finite-element analysis. Then, a global inverse identification procedure was developed. Its aim was to relate the unaged parameters to the moisture concentration and overcome the difficulties usually associated with ageing of bonded assemblies in a humid environment: a non-uniformity of the stress state and a gradient of mechanical properties in the adhesive. This procedure was similar to the one used in the first part but needed modified Arcan results for several ageing times. It also required an initial assumption for the evolution of the Mahnken-Schlimmer parameters with the moisture concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tendo sido interrompido, a partir do ano lectivo de 2015/2016, o 1º Ciclo do Curso de Engenharia Civil, o autor resolveu reunir toda a informação que foi disponibilizada aos alunos da disciplina de Resistência de Materiais, durante os 8 anos em que o curso funcionou na Universidade de Évora. O presente trabalho versa o tema do Esforço axial da Resistência de Materiais e é uma edição revista e acrescentada das edições que foram publicadas em 2013; 2009 e 2008. No curso, a disciplina de Resistência de Materiais tinha a duração de um único semestre (4º semestre), pelo que foi necessário selecionar os temas mais relevantes a ensinar sobre Esforço axial. Nos diversos pontos deste trabalho são apresentados os aspectos formais importantes, completados com problemas resolvidos e não resolvidos de aplicação. No último ponto estão incluídos todos os exercícios de aplicação sobre Esforço axial abordados nas aulas práticas e os que foram alvo de avaliação nas provas de frequência e de exame.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axial melt lenses sandwiched between the lower oceanic crust and the sheeted dike sequences at fast-spreading mid-ocean ridges are assumed to be the major magma source of oceanic crust accretion. According to the widely discussed "gabbro glacier'' model, the formation of the lower oceanic crust requires efficient cooling of the axial melt lens, leading to partial crystallization and crystal-melt mush subsiding down to lower crust. These processes are believed to be controlled by periodical magma replenishment and hydrothermal circulation above the melt lens. Here we quantify the cooling rate above melt lens using chemical zoning of plagioclase from hornfelsic recrystallized sheeted dikes drilled from the East Pacific at the Integrated Ocean Drilling Program Hole 1256D. Weestimate the cooling rate using a forward modelling approach based on CaAl-NaSi interdiffusion in plagioclase. The results show that cooling from the peak thermal overprint at 1000-10506 degrees C to 6006 degrees C are yielded within about 10-30 years as a result of hydrothermal circulation above melt lens during magma starvation. The estimated rapid hydrothermal cooling explains how the effective heat extraction from melt lens is achieved at fast-spreading mid-ocean ridges.