990 resultados para AUTOSOMAL-RECESSIVE DEAFNESS
Resumo:
Distal myopathies represent a heterogeneous group of inherited skeletal muscle disorders. One type of adult-onset, progressive autosomal-dominant distal myopathy, frequently associated with dysphagia and dysphonia (vocal cord and pharyngeal weakness with distal myopathy [VCPDM]), has been mapped to chromosome 5q31 in a North American pedigree. Here, we report the identification of a second large VCPDM family of Bulgarian descent and fine mapping of the critical interval. Sequencing of positional candidate genes revealed precisely the same nonconservative S85C missense mutation affecting an interspecies conserved residue in the MATR3 gene in both families. MATR3 is expressed in skeletal muscle and encodes matrin 3, a component of the nuclear matrix, which is a proteinaceous network that extends throughout the nucleus. Different disease related haplotype signatures in the two families provided evidence that two independent mutational events at the same position in MATR3 cause VCPDM. Our data establish proof of principle that the nuclear matrix is crucial for normal skeletal muscle structure and function and put VCPDM on the growing list of monogenic disorders associated with the nuclear proteome.
Resumo:
Modern cochlear implantation technologies allow deaf patients to understand auditory speech; however, the implants deliver only a coarse auditory input and patients must use long-term adaptive processes to achieve coherent percepts. In adults with post-lingual deafness, the high progress of speech recovery is observed during the first year after cochlear implantation, but there is a large range of variability in the level of cochlear implant outcomes and the temporal evolution of recovery. It has been proposed that when profoundly deaf subjects receive a cochlear implant, the visual cross-modal reorganization of the brain is deleterious for auditory speech recovery. We tested this hypothesis in post-lingually deaf adults by analysing whether brain activity shortly after implantation correlated with the level of auditory recovery 6 months later. Based on brain activity induced by a speech-processing task, we found strong positive correlations in areas outside the auditory cortex. The highest positive correlations were found in the occipital cortex involved in visual processing, as well as in the posterior-temporal cortex known for audio-visual integration. The other area, which positively correlated with auditory speech recovery, was localized in the left inferior frontal area known for speech processing. Our results demonstrate that the visual modality's functional level is related to the proficiency level of auditory recovery. Based on the positive correlation of visual activity with auditory speech recovery, we suggest that visual modality may facilitate the perception of the word's auditory counterpart in communicative situations. The link demonstrated between visual activity and auditory speech perception indicates that visuoauditory synergy is crucial for cross-modal plasticity and fostering speech-comprehension recovery in adult cochlear-implanted deaf patients.
Resumo:
A recent study suggests that sex-specific dispersal rates can be quantitatively estimated on the basis of sex- and state-specific (pre- vs. postdispersal) F-statistics. In the present paper, we extend this approach to account for the hierarchical structure of natural populations, and we validate it through individual-based simulations. The model is applied to an empirical data set consisting of 536 individuals (males, females, and predispersal juveniles) of greater white-toothed shrews (Crocidura russula), sampled according to a hierarchical design and typed for seven autosomal microsatellite loci. From this dataset, dispersal is significantly female biased at the local scale (breeding-group level), but not at the larger scale (among local populations). We argue that selective pressures on dispersal are likely to depend on the spatial scale considered, and that short-distance dispersal should mainly respond to kin interactions (inbreeding or kin competition avoidance), which exert differential pressure on males and females.
Resumo:
The eye is a complex organ, which provides one of our most important senses, sight. The retina is the neuronal component of the eye and represents the connection with the central nervous system for the transmission of the information that leads to image processing. Retinitis pigmentosa (RP) is one of the most common forms of inherited retinal degeneration, in which the primary death of rods, resulting in night blindness, is always followed by the loss of cones, which leads to legal blindness. Clinical and genetic heterogeneity in retinitis pigmentosa is not only due to different mutations in different genes, but also to different effects of the same mutation in different individuals, sometimes even within the same family. My thesis work has been mainly focused on an autosomal dominant form of RP linked to mutations in the PRPF31 gene, which often shows reduced penetrance. Our study has led to the identification of the major regulator of the penetrance of PRPF31 mutations, the CNOT3 protein, and to the characterization of its mechanism of action. Following the same rationale of investigating molecular mechanisms that are responsible for clinical and genetic heterogeneity of retinitis pigmentosa, we studied a recessive form of the disease associated with mutations in the recently-identified gene FAMI61 A, where mutations in the same gene give rise to variable clinical manifestations. Our data have increased the knowledge of the relationship between genotype and phenotype in this form of the disease. Whole genome sequencing technique was also tested as a strategy for disease gene identification in unrelated patients with recessive retinitis pigmentosa and proved to be effective in identifying disease-causing variants that might have otherwise failed to be detected with other screening methods. Finally, for the first time we reported a choroidal tumor among the clinical manifestations of PTEN hamartoma tumor syndrome, a genetic disorder caused by germline mutations of the tumor suppressor gene PTEN. Our study has highlighted the heterogeneity of this choroidal tumor, showing that genetic and/or epigenetic alterations in different genes may contribute to the tumor development and growth. - L'oeil est un organe complexe, à l'origine d'un de nos sens les plus importants, la vue. La rétine est la composante neuronale de l'oeil qui constitue la connexion avec le système nerveux central pour la transmission de l'information et qui conduit à la formation des images. La rétinite pigmentaire (RP) est une des formes les plus courantes de dégénérescence rétinienne héréditaire, dans laquelle la mort primaire de bâtonnets, entraînant la cécité nocturne, est toujours suivie par la perte de cônes qui conduit à la cécité complète. L'hétérogénéité clinique et génétique dans la rétinite pigmentaire n'est pas seulement due aux différentes mutations dans des gènes différents, mais aussi à des effets différents de la même mutation chez des individus différents, parfois même dans la même famille. Mon travail de thèse s'est principalement axé sur une forme autosomique dominante de RP liée à des mutations dans le gène PRPF31, associées souvent à une pénétrance réduite, me conduisant à l'identification et à la caractérisation du mécanisme d'action du régulateur principal de la pénétrance des mutations: la protéine CNOT3. Dans la même logique d'étude des mécanismes moléculaires responsables de l'hétérogénéité clinique et génétique de la RP, nous avons étudié une forme récessive de la maladie associée à des mutations dans le gène récemment identifié FAMI61 A, dont les mutations dans le même gène donnent lieu à des manifestations cliniques différentes. Nos données ont ainsi accru la connaissance de la relation entre le génotype et le phénotype dans cette forme de maladie. La technique de séquençage du génome entier a été ensuite testée en tant que stratégie pour l'identification du gène de la maladie chez les patients atteints de RP récessive. Cette approche a montré son efficacité dans l'identification de variantes pathologiques qui n'auraient pu être détectées avec d'autres méthodes de dépistage. Enfin, pour la première fois, nous avons identifié une tumeur choroïdienne parmi les manifestations cliniques du PTEN hamartoma tumor syndrome, une maladie génétique causée par des mutations germinales du gène suppresseur de tumeur PTEN. Notre étude a mis en évidence l'hétérogénéité de cette tumeur choroïdienne, montrant que les altérations génétiques et/ou épigénétiques dans les différents gènes peuvent contribuer au développement et à la croissance tumorale.
Resumo:
In addition to differences in protein-coding gene sequences, changes in expression resulting from mutations in regulatory sequences have long been hypothesized to be responsible for phenotypic differences between species. However, unlike comparison of genome sequences, few studies, generally restricted to pairwise comparisons of closely related mammalian species, have assessed between-species differences at the transcriptome level. They reported that gene expression evolves at different rates in various organs and in a pattern that is overall consistent with neutral models of evolution. In the first part of my thesis, I investigated the evolution of gene expression in therian mammals (i.e.7 placental and marsupials), based on microarray data from human, mouse and the gray short-tailed opossum (Monodelphis domestica). In addition to autosomal genes, a special focus was given to the evolution of X-linked genes. The therian X chromosome was recently shown to be younger than previously thought and to harbor a specific gene content (e.g., genes involved in brain or reproductive functions) that is thought to have been shaped by specific sex-related evolutionary forces. Sex chromosomes derive from ordinary autosomes and their differentiation led to the degeneration of the Y chromosome (in mammals) or W chromosome (in birds). Consequently, X- or Z-linked genes differ in gene dose between males and females such that the heterogametic sex has half the X/Z gene dose compared to the ancestral state. To cope with this dosage imbalance, mammals have been reported to have evolved mechanisms of dosage compensation.¦In the first project, I could first show that transcriptomes evolve at different rates in different organs. Out of the five tissues I investigated, the testis is the most rapidly evolving organ at the gene expression level while the brain has the most conserved transcriptome. Second, my analyses revealed that mammalian gene expression evolution is compatible with a neutral model, where the rates of change in gene expression levels is linked to the efficiency of purifying selection in a given lineage, which, in turn, is determined by the long-term effective population size in that lineage. Thus, the rate of DNA sequence evolution, which could be expected to determine the rate of regulatory sequence change, does not seem to be a major determinant of the rate of gene expression evolution. Thus, most gene expression changes seem to be (slightly) deleterious. Finally, X-linked genes seem to have experienced elevated rates of gene expression change during the early stage of X evolution. To further investigate the evolution of mammalian gene expression, we generated an extensive RNA-Seq gene expression dataset for nine mammalian species and a bird. The analyses of this dataset confirmed the patterns previously observed with microarrays and helped to significantly deepen our view on gene expression evolution.¦In a specific project based on these data, I sought to assess in detail patterns of evolution of dosage compensation in amniotes. My analyses revealed the absence of male to female dosage compensation in monotremes and its presence in marsupials and, in addition, confirmed patterns previously described for placental mammals and birds. I then assessed the global level of expression of X/Z chromosomes and contrasted this with its ancestral gene expression levels estimated from orthologous autosomal genes in species with non-homologous sex chromosomes. This analysis revealed a lack of up-regulation for placental mammals, the level of expression of X-linked genes being proportional to gene dose. Interestingly, the ancestral gene expression level was at least partially restored in marsupials as well as in the heterogametic sex of monotremes and birds. Finally, I investigated alternative mechanisms of dosage compensation and found that gene duplication did not seem to be a widespread mechanism to restore the ancestral gene dose. However, I could show that placental mammals have preferentially down-regulated autosomal genes interacting with X-linked genes which underwent gene expression decrease, and thus identified a novel alternative mechanism of dosage compensation.
Resumo:
Metaphyseal dysplasia, Spahr type (MDST; OMIM 250400) was described in 1961 based on the observation of four children in one family who had rickets-like metaphyseal changes but normal blood chemistry and moderate short stature. Its molecular basis and nosologic status remained unknown. We followed up on those individuals and diagnosed the disorder in an additional member of the family. We used exome sequencing to ascertain the underlying mutation and explored its consequences on three-dimensional models of the affected protein. The MDST phenotype is associated with moderate short stature and knee pain in adults, while extra-skeletal complications are not observed. The sequencing showed that MDST segregated with a c.619T>G single nucleotide transversion in MMP13. The predicted non-conservative amino acid substitution, p.Trp207Gly, disrupts a crucial hydrogen bond in the calcium-binding region of the catalytic domain of the matrix metalloproteinase, MMP13. The MDST phenotype is associated with recessive MMP13 mutations, confirming the importance of this metalloproteinase in the metaphyseal growth plate. Dominant MMP13 mutations have been associated with metaphyseal anadysplasia (OMIM 602111), while a single child homozygous for a MMP13 mutation had been previously diagnosed as "recessive metaphyseal anadysplasia," that we conclude is the same nosologic entity as MDST. Molecular confirmation of MDST allows distinction of it from dominant conditions (e.g., metaphyseal dysplasia, Schmid type; OMIM # 156500) and from more severe multi-system conditions (such as cartilage-hair hypoplasia; OMIM # 250250) and to give precise recurrence risks and prognosis. © 2014 Wiley Periodicals, Inc.
Resumo:
Purpose: To date, the genotype/phenotype correlation of p.G56R-linked autosomal dominant retinitis pigmentosa (ADRP) is limited to less than 10 kindred. The purpose of this study is to report an unusual appearance of fundus autofluorescence (AF) with NR2E3 p.G56R-linked ADRP in a single kindred.Methods: Patients were enrolled among three generations in a previously unreported family. Molecular diagnosis was performed on all exons of NR2E3 and a p.G56R mutation was identified in affected family members only. Examinations included fundus photography, visual fields, optical coherence tomography, AF, near-infrared AF and ISCEV-standard electrophysiology (ERG).Results: Among 10 examined family members, 5 were affected. The youngest and oldest patients were 16 and 65 years old, respectively. Fundus examination revealed a range of retinal disorder from normal to optic nerve pallor, attenuated arterial caliber and bone spicule-like pigment deposits. In all patients, AF showed a double hyperfluorescent ring; an inner paramacular ring which extension was comparable among patients and an outer ring along the vascular arcades which extended towards periphery in older patients and became hypofluorescent. Maximal scotopic ERGs when recordable showed an increased a/b wave ratio.Conclusions: A double hyperfluorescent ring on AF is an uncommon observation and might be a specific clinical finding in NR2E3 p.G56R-linked ADRP. The consistency of that finding in all affected members of our 3-generation family confirms a previous study. Further analysis is required to determine whether AF changes are associated with particular retinal layer abnormalities.
Resumo:
It is possible to distribute the 17 autosomic fragile sites presently known in three categories according to their sensitivity: BrdU-sensitive sites (10q25, 16q22, 17p12), distamycin A-sensitive sites (16q22, 17p12) and folate- and thymidilate-sensitive sites (2q11-q14, 3p14, 6p23, 7p11, 8q22, 9p21, 9q32, 10q23, 11q13, 11q23, 12q13, 16p12, 16q23, 17p12, 20p11). Four fundamental problems are discussed, first the relation between the presence of a fragile site and the phenotype, secondly the incidence of autosomic sites, third the origin of fragility (particularity of DNA structure, defect of the DNA/proteins binding and abnormal arrangement of chromatin, abnormality of the metaphasic scaffold) and fourth the localization of fragile sites.
Resumo:
RESUME Nous rapportons l'étude d'une famille de 49 membres sur 5 générations. Parmi 35 membres étudiés, 18 sont atteints d'Osteolyse Expansive Familiale (OEF). L'OEF est une dysplasie osseuse génétique rare, autosomique dominante, dont les altérations locales et générales du squelette ont une distribution périphérique prédominante qui devient manifeste à partir de la deuxième décennie de vie. Une résorption ostéoclastique progressive, accompagnée d'une faible activité ostéoblastique, est à l'origine d'une expansion médullaire osseuse. Cette dernière est caractérisée par une raréfaction de la moelle osseuse qui est remplacée par du tissu fibreux et de la graisse. L'amincissement de la moelle osseuse aboutit à des déformations invalidantes, sévères et douloureuses du squelette, avec tendance aux fractures spontanées. La première manifestation clinique de la maladie est une surdité de transmission très précoce résultant d'une lyse de la chaîne ossiculaire. Radiologiquement, il existe toujours une pneumatisation marquée de la mastoïde et du rocher. Les dents montrent des signes importants de résorption osseuse au niveau de la région apicale et/ou du collet, dont l'aspect est caractéristique et unique. La phosphatase alcaline sérique, l'hydroxyproline et la deoxypiridoline urinaire sont élevées à des taux variables. Le taux de calcium et d'hormone parathyroïdienne est normal. Le traitement par les diphosphonates, la calcitonine et la vitamine D est inefficace. Histologiquement, l'OEF présente des similitudes avec la maladie de Paget, mais l'âge de début, la distribution des lésions osseuses, les altérations dentaires et de l'oreille moyenne, ainsi que la progression clinique sont différents. Il en va de même pour la dysplasie fibreuse, l'ostéite fibro-kystique et l'ostéogénèse imparfaite. Le gêne responsable de la maladie se localise dans la région du chromosome 18q21-22. Récemment, des mutations du TNFRSF 11A, gêne qui codifie le RANK, ont été identifiées comme étant la cause de l'OEF. La duplication de la 18ème paire de base au niveau de l'exon 1 suggère qu'il correspond au site de l'anomalie. La technique chirurgicale et les résultats audiométriques à court et long terme de 13 interventions chez 8 patients sont présentés. ABSTRACT Objectives: Familial Expansive Osteolysis (EEO) is a rare autosomal dominant bone dys¬plasia. The disease can show general and focal skeletal alterations, the latter having a pre¬dominantly peripheral distribution. Onset occurs after the second decade of life. Patients and methods: We present the study, of 30 years, of a family consisting of 49 members covering five generations. Results: Among the 35 members studied, 18 have familial expansive osteolysis (FEO). The first clinical sign of the condition is transmission deafness at an early age. The features of the teeth has a unique and characteristic appearance. Thinning of the corti¬cal bone leads to severe, painful, disabling deformities. Serum alkaline phosphatase, and urinary hydroxyproline and deoxipyridinoline are elevated. Calcium and parathyroid hor¬mone are normal. Treatment with diphosphonates, calcitonin and vitamin D has been unsuccessful. We present the surgical technology and the results to short and long term of 13 interventions on 8 patients. Conclusion: Progressive osteoclastic reabsorption accompanied by weak osteoblastic activ¬ity results in medullary expansion characterized by rarefaction of the bone marrow, which is replaced by fibrous tissue and fat. FE0 is histologically similar to Paget disease, but the age of onset, the distribution of the bone lesions, the dental and middle ear alterations, and the clin¬ical progression are different. These features also differentiate FE0 from fibrous dysplasia, fibrocystic osteitis and imperfect osteogenesis. The gene responsible for EEO is located in the 18q21-22 chromosome region. Mutations in TNFRSF11A, the gene encoding receptor activa¬tor of nuclear factor-kappa-B (RANK), has been recently identified as the cause of FEO. A duplication of 18 base pairs in exon 1 of the TNFRSF11A gene suggests that this corresponds to the site of the anomaly and can be considered a "hot spot" for mutations.
Resumo:
Deficiency of carbohydrate sulfotransferase 3 (CHST3; also known as chondroitin-6-sulfotransferase) has been reported in a single kindred so far and in association with a phenotype of severe chondrodysplasia with progressive spinal involvement. We report eight CHST3 mutations in six unrelated individuals who presented at birth with congenital joint dislocations. These patients had been given a diagnosis of either Larsen syndrome (three individuals) or humero-spinal dysostosis (three individuals), and their clinical features included congenital dislocation of the knees, elbow joint dysplasia with subluxation and limited extension, hip dysplasia or dislocation, clubfoot, short stature, and kyphoscoliosis developing in late childhood. Analysis of chondroitin sulfate proteoglycans in dermal fibroblasts showed markedly decreased 6-O-sulfation but enhanced 4-O-sulfation, confirming functional impairment of CHST3 and distinguishing them from diastrophic dysplasia sulphate transporter (DTDST)-deficient cells. These observations provide a molecular basis for recessive Larsen syndrome and indicate that recessive Larsen syndrome, humero-spinal dysostosis, and spondyloepiphyseal dysplasia Omani type form a phenotypic spectrum.
Resumo:
Given that retroposed copies of genes are presumed to lack the regulatory elements required for their expression, retroposition has long been considered a mechanism without functional relevance. However, through an in silico assay for transcriptional activity, we identify here >1,000 transcribed retrocopies in the human genome, of which at least approximately 120 have evolved into bona fide genes. Among these, approximately 50 retrogenes have evolved functions in testes, more than half of which were recruited as functional autosomal counterparts of X-linked genes during spermatogenesis. Generally, retrogenes emerge "out of the testis," because they are often initially transcribed in testis and later evolve stronger and sometimes more diverse spatial expression patterns. We find a significant excess of transcribed retrocopies close to other genes or within introns, suggesting that retrocopies can exploit the regulatory elements and/or open chromatin of neighboring genes to become transcribed. In direct support of this hypothesis, we identify 36 retrocopy-host gene fusions, including primate-specific chimeric genes. Strikingly, 27 intergenic retrogenes have acquired untranslated exons de novo during evolution to achieve high expression levels. Notably, our screen for highly transcribed retrocopies also uncovered a retrogene linked to a human recessive disorder, gelatinous drop-like corneal dystrophy, a form of blindness. These functional implications for retroposition notwithstanding, we find that the insertion of retrocopies into genes is generally deleterious, because it may interfere with the transcription of host genes. Our results demonstrate that natural selection has been fundamental in shaping the retrocopy repertoire of the human genome.
Resumo:
The prevalence of keratosis pilaris and accentuated palmoplantar marking was evaluated in 61 patients with atopic dermatitis, 35 patients with dominant ichthyosis vulgaris and 247 other dermatological cases taken as controls. Our data showed that (1) these features are of no diagnostic significance for atopic dermatitis and (2) they are significantly more frequent in patients with ichthyosis vulgaris without associated eczema than in those with atopic dermatitis. Consequently, they should be considered as part of the phenotype of ichthyosis vulgaris rather than attributed to a concomitant atopic dermatitis as suggested by some. These findings should be taken into account when evaluating atopic dermatitis or ichthyosis. To assess the frequency of scaling under winter weather conditions, 155 control subjects were also examined for evidence of visible desquamation and 25.8% showed slight but definite scaling.
Resumo:
Context: Fibroblast growth factor (FGF) 8 is important for GnRH neuronal development with human mutations resulting in Kallmann syndrome. Murine data suggest a role for Fgf8 in hypothalamo-pituitary development; however, its role in the etiology of wider hypothalamo-pituitary dysfunction in humans is unknown.Objective: The objective of this study was to screen for FGF8 mutations in patients with septo-optic dysplasia (n = 374) or holoprosencephaly (HPE)/midline clefts (n = 47).Methods: FGF8 was analyzed by PCR and direct sequencing. Ethnically matched controls were then screened for mutated alleles (n = 480-686). Localization of Fgf8/FGF8 expression was analyzed by in situ hybridization in developing murine and human embryos. Finally, Fgf8 hypomorphic mice (Fgf8(loxPNeo/-)) were analyzed for the presence of forebrain and hypothalamo-pituitary defects.Results: A homozygous p.R189H mutation was identified in a female patient of consanguineous parentage with semilobar HPE, diabetes insipidus, and TSH and ACTH insufficiency. Second, a heterozygous p.Q216E mutation was identified in a female patient with an absent corpus callosum, hypoplastic optic nerves, and Moebius syndrome. FGF8 was expressed in the ventral diencephalon and anterior commissural plate but not in Rathke's pouch, strongly suggesting early onset hypothalamic and corpus callosal defects in these patients. This was consolidated by significantly reduced vasopressin and oxytocin staining neurons in the hypothalamus of Fgf8 hypomorphic mice compared with controls along with variable hypothalamo-pituitary defects and HPE.Conclusion: We implicate FGF8 in the etiology of recessive HPE and potentially septo-optic dysplasia/Moebius syndrome for the first time to our knowledge. Furthermore, FGF8 is important for the development of the ventral diencephalon, hypothalamus, and pituitary. (J Clin Endocrinol Metab 96: E1709-E1718, 2011)