790 resultados para ARTIFICIAL NEURAL NETWORK
Resumo:
Pervasive and distributed Internet of Things (IoT) devices demand ubiquitous coverage beyond No-man’s land. To satisfy plethora of IoT devices with resilient connectivity, Non-Terrestrial Networks (NTN) will be pivotal to assist and complement terrestrial systems. In a massiveMTC scenario over NTN, characterized by sporadic uplink data reports, all the terminals within a satellite beam shall be served during the short visibility window of the flying platform, thus generating congestion due to simultaneous access attempts of IoT devices on the same radio resource. The more terminals collide, the more average-time it takes to complete an access which is due to the decreased number of successful attempts caused by Back-off commands of legacy methods. A possible countermeasure is represented by Non-Orthogonal Multiple Access scheme, which requires the knowledge of the number of superimposed NPRACH preambles. This work addresses this problem by proposing a Neural Network (NN) algorithm to cope with the uncoordinated random access performed by a prodigious number of Narrowband-IoT devices. Our proposed method classifies the number of colliding users, and for each estimates the Time of Arrival (ToA). The performance assessment, under Line of Sight (LoS) and Non-LoS conditions in sub-urban environments with two different satellite configurations, shows significant benefits of the proposed NN algorithm with respect to traditional methods for the ToA estimation.
Resumo:
Animal welfare has been an important research topic in animal production mainly in its ways of assessment. Vocalization is found to be an interesting tool for evaluating welfare as it provides data in a non-invasive way as well as it allows easy automation of process. The present research had as objective the implementation of an algorithm based on artificial neural network that had the potential of identifying vocalization related to welfare pattern indicatives. The research was done in two parts, the first was the development of the algorithm, and the second its validation with data from the field. Previous records allowed the development of the algorithm from behaviors observed in sows housed in farrowing cages. Matlab® software was used for implementing the network. It was selected a retropropagation gradient algorithm for training the network with the following stop criteria: maximum of 5,000 interactions or error quadratic addition smaller than 0.1. Validation was done with sows and piglets housed in commercial farm. Among the usual behaviors the ones that deserved enhancement were: the feed dispute at farrowing and the eventual risk of involuntary aggression between the piglets or between those and the sow. The algorithm was able to identify through the noise intensity the inherent risk situation of piglets welfare reduction.
Resumo:
A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macronutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic, A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 mu s integration time gate, 1.1 mu s delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Biodiesel is an important new alternative fuel. The feedstock used and the process employed determines whether it fulfills the required specifications. In this work, an identification method is proposed using an electronic nose (e-nose). Four samples of biodiesel from different sources and one of petrodiesel were analyzed and well-recognized by the e-nose. Both pure biodiesel and B20 blends were studied. Furthermore, an innovative semiquantitative method is proposed on the basis of the smellprints correlated by a feed-forward artificial neural network. The results have demonstrated that the e-nose can be used to identify the biodiesel source and as a preliminary quantitative assay in place of expensive equipment.
Resumo:
The behavior of stability regions of nonlinear autonomous dynamical systems subjected to parameter variation is studied in this paper. In particular, the behavior of stability regions and stability boundaries when the system undergoes a type-zero sadle-node bifurcation on the stability boundary is investigated in this paper. It is shown that the stability regions suffer drastic changes with parameter variation if type-zero saddle-node bifurcations occur on the stability boundary. A complete characterization of these changes in the neighborhood of a type-zero saddle-node bifurcation value is presented in this paper. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Power distribution automation and control are import-ant tools in the current restructured electricity markets. Unfortunately, due to its stochastic nature, distribution systems faults are hardly avoidable. This paper proposes a novel fault diagnosis scheme for power distribution systems, composed by three different processes: fault detection and classification, fault location, and fault section determination. The fault detection and classification technique is wavelet based. The fault-location technique is impedance based and uses local voltage and current fundamental phasors. The fault section determination method is artificial neural network based and uses the local current and voltage signals to estimate the faulted section. The proposed hybrid scheme was validated through Alternate Transient Program/Electromagentic Transients Program simulations and was implemented as embedded software. It is currently used as a fault diagnosis tool in a Southern Brazilian power distribution company.
Resumo:
We address here aspects of the implementation of a memory evolutive system (MES), based on the model proposed by A. Ehresmann and J. Vanbremeersch (2007), by means of a simulated network of spiking neurons with time dependent plasticity. We point out the advantages and challenges of applying category theory for the representation of cognition, by using the MES architecture. Then we discuss the issues concerning the minimum requirements that an artificial neural network (ANN) should fulfill in order that it would be capable of expressing the categories and mappings between them, underlying the MES. We conclude that a pulsed ANN based on Izhikevich`s formal neuron with STDP (spike time-dependent plasticity) has sufficient dynamical properties to achieve these requirements, provided it can cope with the topological requirements. Finally, we present some perspectives of future research concerning the proposed ANN topology.
Resumo:
Accurate price forecasting for agricultural commodities can have significant decision-making implications for suppliers, especially those of biofuels, where the agriculture and energy sectors intersect. Environmental pressures and high oil prices affect demand for biofuels and have reignited the discussion about effects on food prices. Suppliers in the sugar-alcohol sector need to decide the ideal proportion of ethanol and sugar to optimise their financial strategy. Prices can be affected by exogenous factors, such as exchange rates and interest rates, as well as non-observable variables like the convenience yield, which is related to supply shortages. The literature generally uses two approaches: artificial neural networks (ANNs), which are recognised as being in the forefront of exogenous-variable analysis, and stochastic models such as the Kalman filter, which is able to account for non-observable variables. This article proposes a hybrid model for forecasting the prices of agricultural commodities that is built upon both approaches and is applied to forecast the price of sugar. The Kalman filter considers the structure of the stochastic process that describes the evolution of prices. Neural networks allow variables that can impact asset prices in an indirect, nonlinear way, what cannot be incorporated easily into traditional econometric models.
Resumo:
T cells recognize peptide epitopes bound to major histocompatibility complex molecules. Human T-cell epitopes have diagnostic and therapeutic applications in autoimmune diseases. However, their accurate definition within an autoantigen by T-cell bioassay, usually proliferation, involves many costly peptides and a large amount of blood, We have therefore developed a strategy to predict T-cell epitopes and applied it to tyrosine phosphatase IA-2, an autoantigen in IDDM, and HLA-DR4(*0401). First, the binding of synthetic overlapping peptides encompassing IA-2 was measured directly to purified DR4. Secondly, a large amount of HLA-DR4 binding data were analysed by alignment using a genetic algorithm and were used to train an artificial neural network to predict the affinity of binding. This bioinformatic prediction method was then validated experimentally and used to predict DR4 binding peptides in IA-2. The binding set encompassed 85% of experimentally determined T-cell epitopes. Both the experimental and bioinformatic methods had high negative predictive values, 92% and 95%, indicating that this strategy of combining experimental results with computer modelling should lead to a significant reduction in the amount of blood and the number of peptides required to define T-cell epitopes in humans.
Resumo:
Computer models can be combined with laboratory experiments for the efficient determination of (i) peptides that bind MHC molecules and (ii) T-cell epitopes. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures. This requires the definition of standards and experimental protocols for model application. We describe the requirements for validation and assessment of computer models. The utility of combining accurate predictions with a limited number of laboratory experiments is illustrated by practical examples. These include the identification of T-cell epitopes from IDDM-, melanoma- and malaria-related antigens by combining computational and conventional laboratory assays. The success rate in determining antigenic peptides, each in the context of a specific HLA molecule, ranged from 27 to 71%, while the natural prevalence of MHC-binding peptides is 0.1-5%.
Resumo:
This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.
Resumo:
Antigen recognition by cytotoxic CD8 T cells is dependent upon a number of critical steps in MHC class I antigen processing including proteosomal cleavage, TAP transport into the endoplasmic reticulum, and MHC class 1 binding. Based on extensive experimental data relating to each of these steps there is now the capacity to model individual antigen processing steps with a high degree of accuracy. This paper demonstrates the potential to bring together models of individual antigen processing steps, for example proteosome cleavage, TAP transport, and MHC binding, to build highly informative models of functional pathways. In particular, we demonstrate how an artificial neural network model of TAP transport was used to mine a HLA-binding database so as to identify H LA-binding peptides transported by TAP. This integrated model of antigen processing provided the unique insight that HLA class I alleles apparently constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3, and -A24) and those that are TAP-inefficient (HLA-A2, -B7, and -B8). Hence, using this integrated model we were able to generate novel hypotheses regarding antigen processing, and these hypotheses are now capable of being tested experimentally. This model confirms the feasibility of constructing a virtual immune system, whereby each additional step in antigen processing is incorporated into a single modular model. Accurate models of antigen processing have implications for the study of basic immunology as well as for the design of peptide-based vaccines and other immunotherapies. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Computational models complement laboratory experimentation for efficient identification of MHC-binding peptides and T-cell epitopes. Methods for prediction of MHC-binding peptides include binding motifs, quantitative matrices, artificial neural networks, hidden Markov models, and molecular modelling. Models derived by these methods have been successfully used for prediction of T-cell epitopes in cancer, autoimmunity, infectious disease, and allergy. For maximum benefit, the use of computer models must be treated as experiments analogous to standard laboratory procedures and performed according to strict standards. This requires careful selection of data for model building, and adequate testing and validation. A range of web-based databases and MHC-binding prediction programs are available. Although some available prediction programs for particular MHC alleles have reasonable accuracy, there is no guarantee that all models produce good quality predictions. In this article, we present and discuss a framework for modelling, testing, and applications of computational methods used in predictions of T-cell epitopes. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
This study describes a simple method for long-term establishment of human ovarian tumor lines and prediction of T-cell epitopes that could be potentially useful in the generation of tumor-specific cytotoxic T lymphocytes (CTLs), Nine ovarian tumor lines (INT.Ov) were generated from solid primary or metastatic tumors as well as from ascitic fluid, Notably all lines expressed HLA class I, intercellular adhesion molecule-1 (ICAM-1), polymorphic epithelial mucin (PEM) and cytokeratin (CK), but not HLA class II, B7.1 (CD80) or BAGE, While of the 9 lines tested 4 (INT.Ov1, 2, 5 and 6) expressed the folate receptor (FR-alpha) and 6 (INT.Ov1, 2, 5, 6, 7 and 9) expressed the epidermal growth factor receptor (EGFR); MAGE-1 and p185(HER-2/neu) were only found in 2 lines (INT.Ov1 and 2) and GAGE-1 expression in 1 line (INT.Ov2). The identification of class I MHC ligands and T-cell epitopes within protein antigens was achieved by applying several theoretical methods including: 1) similarity or homology searches to MHCPEP; 2) BIMAS and 3) artificial neural network-based predictions of proteins MACE, GAGE, EGFR, p185(HER-2/neu) and FR-alpha expressed in INT.Ov lines, Because of the high frequency of expression of some of these proteins in ovarian cancer and the ability to determine HLA binding peptides efficiently, it is expected that after appropriate screening, a large cohort of ovarian cancer patients may become candidates to receive peptide based vaccines. (C) 1997 Wiley-Liss, Inc.
Resumo:
Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.