957 resultados para ALCOHOL FUEL CELLS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy in electrical energy by a reaction directly. The solid oxide fuel cell (SOFC) works in temperature between 900ºC up to 1000ºC, Nowadays the most material for ceramic electrolytes is yttria stabilized zirconium. However, the high operation temperature can produce problems as instability and incompatibility of materials, thermal degradation and high cost of the surround materials. These problems can be reduced with the development of intermediate temperature solid oxide fuel cell (IT-SOFC) that works at temperature range of 600ºC to 800ºC. Ceria doped gadolinium is one of the most promising materials for electrolytes IT-SOFC due high ionic conductivity and good compatibility with electrodes. The inhibition of grain growth has been investigated during the sintering to improve properties of electrolytes. Two-step sintering (TSS) is an interesting technical to inhibit this grain growth and consist at submit the sample at two stages of temperature. The first one stage aims to achieve the critical density in the initiating the sintering process, then the sample is submitted at the second stage where the temperature sufficient to continue the sintering without accelerate grain growth until to reach total densification. The goal of this work is to produce electrolytes of ceria doped gadolinium by two-step sintering. In this context were produced samples from micrometric and nanometric powders by two routes of two-step sintering. The samples were obtained with elevate relative density, higher than 90% using low energy that some works at the same area. The average grain size are at the range 0,37 μm up to 0,51 μm. The overall ionic conductivity is 1,8x10-2 S.cm and the activation energy is 0,76 eV. Results shown that is possible to obtain ceria-doped gadolinium samples by two-step sintering technique using modified routes with characteristics and properties necessary to apply as electrolytes of solid oxide fuel cell

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fuel cells are considered one of the most promising ways of converting electrical energy due to its high yield and by using hydrogen (as fuel) which is considered one of the most important source of clean energy for the future. Rare earths doped ceria has been widely investigated as an alternative material for the electrolyte of solid oxide fuel cells (SOFCs) due to its high ionic conductivity at low operating temperatures compared with the traditional electrolytes based on stabilized zirconia. This work investigates the effect of gallium oxide (Gallia) as a sintering aid in Eu doped ceria ceramic electrolytes since this effect has already been investigated for Gd, Sm and Y doped ceria electrolytes. The desired goal with the use of a sintering aid is to reduce the sintering temperature aiming to produce dense ceramics. In this study we investigated the effects on densification, microstructure and ionic conduction caused by different molar fraction of the dopants europium (10, 15 and 20%) and gallium oxide (0.3, 0.6 and 0.9%) in samples sintered at 1300, 1350 and 1450 0 C. Samaria (10 and 20%) doped ceria samples sintered between 1350 and 1450 °C were used as reference. Samples were synthesized using the cation complexation method. The ceramics powders were characterized by XRF, XRD and SEM, while the sintered samples were investigated by its relative density, SEM and impedance spectroscopy. It was showed that gallia contents up to 0.6% act as excellent sintering aids in Eu doped ceria. Above this aid content, gallia addition does not promote significant increase in density of the ceramics. In Ga free samples the larger densification were accomplished with Eu 15% molar, effect expressed in the microstructure with higher grain growth although reduced and surrounded by many open pores. Relative densities greater than 95 % were obtained by sintering between 1300 and 1350 °C against the usual range 1500 - 1600 0 C. Samples containing 10% of Sm and 0.9% of Ga reached 96% of theoretical density by sintering at 1350 0 C for 3h, a gain compared to 97% achieved with 20% of Sm and 1% of Ga co-doped cerias sintered at 1450 0 C for 24 h as described in the literature. It is found that the addition of gallia in the Eu doped ceria has a positive effect on the grain conductivity and a negative one in the grain boundary conductivity resulting in a small decrease in the total conductivity which will not compromise its application as sintering aids in ceria based electrolytes. Typical total conductivity values at 600 and 700 °C, around 10 and 30 mS.cm -1 respectively were reached in this study. Samples with 15% of Eu and 0.9 % of Ga sintered at 1300 and 1350 °C showed relative densities greater than 96% and total conductivity (measured at 700 °C) between 20 and 33 mS.cm -1 . The simultaneous sintering of the electrolyte with the anode is one of the goals of research in materials for SOFCs. The results obtained in this study suggest that dense Eu and Ga co-doped ceria electrolytes with good ionic conductivity can be sintered simultaneously with the anode at temperatures below 1350 °C, the usual temperature for firing porous anode materials

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Doped lanthanum chromite ( LaCrO3 ) has been the most common material used as interconnect in solid oxide fuel cells for high temperature ( SOFC-HT ) that enabling the stack of SOFCs. The reduction of the operating temperature, to around 800 º C, of solid oxide fuel cells enabled the use of metallic interconnects as an alternative to ceramic LaCrO3, From the practical point of view, to be a strong candidate for interconnect the material must have good physical and mechanical properties such as resistance to oxidizing and reducing environments, easy manufacture and appropriate thermo-mechanical properties. Thus, a study on the physic-mechanical interconnects La0,8Sr0,2Cr0,92Co0,08O3 ceramics for SOFC -AT obtained by the method of combustion , as well as thermo-mechanical properties of metallic interconnects (AISI 444) covered with La0,8Ca0,2CrO3 by deposition technique by spray-pyrolysis fuel cells for intermediate temperature (IT-SOFCs). The La0,8Sr0,2Cr0,92Co0,08O3 was characterized by X -ray diffraction(XRD) , density and porosity , Vickers hardness (HV) , the flexural strength at room temperature and 900 °C and scanning electron microscopy (SEM). The X -ray diffraction confirmed the phase formation and LaCrO3 and CoCr2O4, in order 6 GPa hardness and mechanical strength at room temperature was 62 MPa ceramic Interconnector. The coated metal interconnects La0,8Ca0,2CrO3 passed the identification by XRD after deposition of the film after the oxidation test. The oxidative behavior showed increased resistance to oxidation of the metal substrate covered by La0,8Ca0,2CrO3 In flexural strength of the coated metal substrate, it was noticed only in the increased room temperature. The a SEM analysis proved the formation of Cr2O3 and (Cr,Mn)3O4 layers on metal substrate and confirmed the stability of the ceramic La0,8 Ca0,2CrO3 film after oxidative test

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development and optimization of electrocatalysts for application in fuel cell systems have been the focus of a variety of studies where core–shell structures have been considered as a promising alternative among the materials studied. We synthesized core–shell nanoparticles of Sn x @Pt y and Rh x @Pt y (Sn@Pt, Sn@Pt2, Sn@Pt3, Rh@Pt, Rh@Pt2, and Rh@Pt3) through a reduction methodology using sodium borohydride. These nanoparticles were electrochemically characterized by cyclic voltammetry and further analyzed by cyclic voltammetry studying their catalytic activity toward glycerol electro-oxidation; chronoamperometry and potentiostatic polarization experiments were also carried out. The physical characterization was carried out by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The onset potential for glycerol oxidation was shifted in 130 and 120 mV on the Sn@Pt3/C and Rh@Pt3/C catalysts, respectively, compared to commercial Pt/C, while the stationary pseudo-current density, taken at 600 mV, increased 2-fold and 5-fold for these catalysts related to Pt/C, respectively. Thus, the catalysts synthesized by the developed methodology have enhanced catalytic activity toward the electro-oxidation of glycerol, representing an interesting alternative for fuel cell systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efficient numerical models facilitate the study and design of solid oxide fuel cells (SOFCs), stacks, and systems. Whilst the accuracy and reliability of the computed results are usually sought by researchers, the corresponding modelling complexities could result in practical difficulties regarding the implementation flexibility and computational costs. The main objective of this article is to adapt a simple but viable numerical tool for evaluation of our experimental rig. Accordingly, a model for a multi-layer SOFC surrounded by a constant temperature furnace is presented, trained and validated against experimental data. The model consists of a four-layer structure including stand, two interconnects, and PEN (Positive electrode-Electrolyte-Negative electrode); each being approximated by a lumped parameter model. The heating process through the surrounding chamber is also considered. We used a set of V-I characteristics data for parameter adjustment followed by model verification against two independent sets of data. The model results show a good agreement with practical data, offering a significant improvement compared to reduced models in which the impact of external heat loss is neglected. Furthermore, thermal analysis for adiabatic and non-adiabatic process is carried out to capture the thermal behaviour of a single cell followed by a polarisation loss assessment. Finally, model-based design of experiment is demonstrated for a case study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen is considered as an appealing alternative to fossil fuels in the pursuit of sustainable, secure and prosperous growth in the UK and abroad. However there exists a persisting bottleneck in the effective storage of hydrogen for mobile applications in order to facilitate a wide implementation of hydrogen fuel cells in the fossil fuel dependent transportation industry. To address this issue, new means of solid state chemical hydrogen storage are proposed in this thesis. This involves the coupling of LiH with three different organic amines: melamine, urea and dicyandiamide. In principle, thermodynamically favourable hydrogen release from these systems proceeds via the deprotonation of the protic N-H moieties by the hydridic metal hydride. Simultaneously hydrogen kinetics is expected to be enhanced over heavier hydrides by incorporating lithium ions in the proposed binary hydrogen storage systems. Whilst the concept has been successfully demonstrated by the results obtained in this work, it was observed that optimising the ball milling conditions is central in promoting hydrogen desorption in the proposed systems. The theoretical amount of 6.97 wt% by dry mass of hydrogen was released when heating a ball milled mixture of LiH and melamine (6:1 stoichiometry) to 320 °C. It was observed that ball milling introduces a disruption in the intermolecular hydrogen bonding network that exists in pristine melamine. This effect extends to a molecular level electron redistribution observed as a function of shifting IR bands. It was postulated that stable phases form during the first stages of dehydrogenation which contain the triazine skeleton. Dehydrogenation of this system yields a solid product Li2NCN, which has been rehydrogenated back to melamine via hydrolysis under weak acidic conditions. On the other hand, the LiH and urea system (4:1 stoichiometry) desorbed approximately 5.8 wt% of hydrogen, from the theoretical capacity of 8.78 wt% (dry mass), by 270 °C accompanied by undesirable ammonia and trace amount of water release. The thermal dehydrogenation proceeds via the formation of Li(HN(CO)NH2) at 104.5 °C; which then decomposes to LiOCN and unidentified phases containing C-N moieties by 230 °C. The final products are Li2NCN and Li2O (270 °C) with LiCN and Li2CO3 also detected under certain conditions. It was observed that ball milling can effectively supress ammonia formation. Furthermore results obtained from energetic ball milling experiments have indicated that the barrier to full dehydrogenation between LiH and urea is principally kinetic. Finally the dehydrogenation reaction between LiH and dicyandiamide system (4:1 stoichiometry) occurs through two distinct pathways dependent on the ball milling conditions. When ball milled at 450 RPM for 1 h, dehydrogenation proceeds alongside dicyandiamide condensation by 400 °C whilst at a slower milling speed of 400 RPM for 6h, decomposition occurs via a rapid gas desorption (H2 and NH3) at 85 °C accompanied by sample foaming. The reactant dicyandiamide can be generated by hydrolysis using the product Li2NCN.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last decades the automotive sector has seen a technological revolution, due mainly to the more restrictive regulation, the newly introduced technologies and, as last, to the poor resources of fossil fuels remaining on Earth. Promising solution in vehicles’ propulsion are represented by alternative architectures and energy sources, for example fuel-cells and pure electric vehicles. The automotive transition to new and green vehicles is passing through the development of hybrid vehicles, that usually combine positive aspects of each technology. To fully exploit the powerful of hybrid vehicles, however, it is important to manage the powertrain’s degrees of freedom in the smartest way possible, otherwise hybridization would be worthless. To this aim, this dissertation is focused on the development of energy management strategies and predictive control functions. Such algorithms have the goal of increasing the powertrain overall efficiency and contextually increasing the driver safety. Such control algorithms have been applied to an axle-split Plug-in Hybrid Electric Vehicle with a complex architecture that allows more than one driving modes, including the pure electric one. The different energy management strategies investigated are mainly three: the vehicle baseline heuristic controller, in the following mentioned as rule-based controller, a sub-optimal controller that can include also predictive functionalities, referred to as Equivalent Consumption Minimization Strategy, and a vehicle global optimum control technique, called Dynamic Programming, also including the high-voltage battery thermal management. During this project, different modelling approaches have been applied to the powertrain, including Hardware-in-the-loop, and diverse powertrain high-level controllers have been developed and implemented, increasing at each step their complexity. It has been proven the potential of using sophisticated powertrain control techniques, and that the gainable benefits in terms of fuel economy are largely influenced by the chose energy management strategy, even considering the powerful vehicle investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Ph.D. thesis addresses the challenging goal of integrating supercapacitive features in MFCs by sustainable materials and processes and valorizing wastes by their processing as key components of supercapacitors and MFCs. Three main research lines have been pursued: i) the development of green supercapacitors by exploiting natural polymers as binders and electrospun separators, ii) the improvement of the power output of MFCs by the external integration of commercial and green supercapacitors, and ii) the development of supercapacitive microbial fuel cells by the monolithic integration of supercapacitive features in MFCs. This Thesis is articulated in the following Sections. Chapter 1 introduce the energy-water nexus, highlights the role played by supercapacitors and MFCs in this context, and describes the main components, and processes in these devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La domanda mondiale di energia è in costante aumento e le attuali tecnologie per la produzione di energia dai combustibili fossili emettono anidride carbonica (CO2). La combinazione di idrogeno ed elettricità è un’incoraggiante soluzione verso la realizzazione di un futuro a “zero emissioni” basato sull’energia sostenibile. L’idrogeno molecolare è un elemento scarso in natura; la sua produzione è quasi esclusivamente da fonti fossili. Se prodotto tramite elettrolisi da fonti di energia naturali è possibile produrre idrogeno senza significative emissioni di anidride carbonica ma con costi ancora troppo elevati; tali metodologie al giorno d’oggi sono ancora poco sviluppate e non in grado di competere con le tecniche industriali più consolidate di derivazione dell’ idrogeno dalle fonti fossili. Un altro ostacolo risiede nella difficoltà di immagazzinarlo e trasportarlo; viene stoccato con sicurezza in grandi contenitori industriali o in recipienti ad alta pressione. Occorre garantire una sufficiente capacità di stoccaggio nelle applicazioni per autoveicoli, così da ottenere un buon equilibrio tra autonomia di guida e spazio di stoccaggio. Nell’autotrazione possono essere utilizzate le fuel cells che assicurano un uso efficiente dell’idrogeno; convertono l’energia chimica dell’idrogeno in energia elettrica, acqua e calore, assicurando rendimenti di conversione energetica molto alti, oltre a garantire una notevole silenziosità dovuta essenzialmente all’assenza di organi rotanti. Le fuel cells possono essere applicate anche ai veicoli dedicati al trasporto pubblico locale, garantendo l’abbattimento delle emissioni nocive nelle aeree urbane al fine del benessere dei cittadini. Tper è da anni attiva sul fronte della mobilità sostenibile; vanta una delle flotte di autobus più “verdi” d’Italia e in un futuro molto prossimo incrementerà ancora di più la percentuale di autobus a basse emissioni puntando soprattutto all’acquisto di autobus ad idrogeno.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il tema principale della tesi sono le emissioni di motori a combustione interna alimentati ad idrogeno. Dopo un'introduzione inziale, nella quale si spiegano le proprietà dell'idrogeno e i passaggi per ottenerlo, si entra nello specifico utilizzo di esso come combustibile e nelle modifiche da apportare ad un comune MCI. Nella parte centrale della tesi vengono prese in considerazione le anomalie di combustione ed alcune soluzioni per esse, soffermandosi in particolare sulla detonazione. Nella parte finale, invece, vengono trattate le emissioni inquinanti e i sistemi di post-trattamento dei gas di scarico, cercando di individuare soluzioni ottimali. Anche quando ci si concentra su altri aspetti però si pone sempre un occhio di riguardo alle possibili emissioni inquinanti dettate dalle condizioni descritte.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La tesi tratta funzionamento, ottimizzazione e applicazioni delle celle a combustibile PEM (PEM Fuel cells) che sono dispositivi capaci di convertire reversibilmente l’energia chimica contenuta nel combustibile in energia elettrica, energia termica e prodotti di reazione. Vengono analizzati gli effetti di temperatura, pressione e umidità sulla cinetica, sulle prestazioni, sull’OCV, sulla conduttività della membrana e sul trasferimento di massa. In generale, per utilizzare una cella a combustibile PEM, ogni componente, materiale e l'assemblaggio delle celle dovrebbe essere realizzabile e ottimizzato per ottenere alte prestazioni. Vengono, quindi, trattate le tecniche di test e diagnosi che rappresentano il modo più popolare e affidabile per convalidare i progetti di questi componenti e della cella combustibile stessa. Inoltre, si affronta il discorso sull’idrogeno definito come vettore di energia che ha assunto un ruolo di primo piano per un mercato a basse emissioni; infatti ha un grande potenziale come combustibile alternativo e assume un ruolo centrale nello scenario energetico del futuro. Infine, si parla anche di applicazioni pratiche ed esistenti riguardanti le celle a combustibile in veicoli, come le proposte di Nuvera ed EH Group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a world where the problem of energy resources, pollution and all aspects related to these issues become more and more dominant, a greater commitment is needed in the search for solutions. The goal of this project is to make a contribution to the research and development of new materials to reduce the environmental impact in some fields. First of all, we tried to synthesize and prepare an isatin-based membrane which has the potential for use in separating industrial gases. Furthermore, ion exchange membranes, specifically hydroxide exchange membranes (HEMs) derived from the same product can be developed for fuel cells (HEMFC) applications. These materials are essential for energy conversion and storage. The most difficult challenge is to guarantee their thermal stability and stability in corrosive environments such as alkali without losing efficiency. In recent years the poly- hydroxyalkylation catalysed with superacids, e.g. TFSA, has become increasingly studied. This reaction is exploited for the synthesis of the compounds of this thesis. After a preliminary optimization of the reaction conditions it was concluded that due to the rigidity and excessive reactivity of the system, it was not possible to obtain the isatin-based membrane to evaluate the gas separation properties. The synthesis of precursor materials for HEMs was successful by using 1-(4-bromobutyl)indoline-2,3-dione (BID) instead of isatin. A characterization of the obtained polymers was carried out using NMR, TGA and DSC analyses, and subsequently the membranes were functionalized with different ammonium-based cations. Unfortunately, this last step was not successful due to the appearance of side reactions. Future studies on the mechanism and kinetics of the reaction solve this obstacle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Groundnut shell (GS), after separation of pod, is readily available as a potential feedstock for production of fermentable sugars. The substrate was delignified with sodium sulfite. The delignified substrate released 670 mg/g of sugars after enzymatic hydrolysis (50 degrees C, 120 rpm, 50 hrs) using commercial cellulases (Dyadic Xylanase PLUS, Dyadic Inc. USA). The groundnut shell enzymatic hydrolysate (45.6 g/L reducing sugars) was fermented for ethanol production with free and sorghum stalks immobilized cells of Pichia stipitis NCIM 3498 under submerged cultivation conditions. Immobilization of yeast cells on sorghum stalks were confirmed by scanning electron microscopy (SEM). A maximum of ethanol production (17.83 g/L, yield 0.44 g/g and 20.45 g/L, yield 0.47 g/g) was observed with free and immobilized cells of P. stipitis respectively in batch fermentation conditions. Recycling of immobilized cells showed a stable ethanol production (20.45 g/L, yield 0.47 g/g) up to 5 batches followed by a gradual downfall in subsequent cycles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We previously showed that 16-day-old rats exposed to a relatively high dose of ethanol at 10-15 postnatal days of age have fewer neurons in the hilus region of the hippocampus compared with controls. Dentate gyrus granule cell numbers, however, showed no statistically significant changes attributable to the ethanol treatment. It is possible that some of the changes in brain morphology, brought about as a result of the exposure to ethanol during early life, may not be manifested until later in life. This question has been further addressed in an extension to our previous study. Wistar rats were exposed to a relatively high daily dose of ethanol on postnatal days 10-15 by placement in a chamber containing ethanol vapour, for 3 h/day. The blood ethanol concentration was found to be similar to430 mg/dl at the end of the period of exposure. Groups of ethanol-treated (ET), separation control (SC), and mother-reared control (MRC) rats were anaesthetised and killed either at 16 or 30 days of age by perfusion with phosphate-buffered 2.5% glutaraldehyde. The Cavalieri principle and the physical disector methods were used to estimate, respectively, the regional volumes and neuron cell numerical densities in the hilus and granule cell regions of the dentate gyrus. The total numbers of neurons in the hilus region and granule cell layer were computed from these estimates. It was found that 16-day-old animals had 398,000-441,000 granule cells, irrespective of group. The numbers of granule cells increased such that by 30 days of age, rats had 487,000-525,500 granule cells. However, there were no significant differences between ethanol-treated rats and their age-matched controls in granule cell numbers. In contrast, ethanol-treated rats had slightly but significantly fewer neurons in the hilus region than did control animals at 16 days of age, but not at 30 days of age. Therefore, it appears that a short period of ethanol exposure during early life can have effects on neuron numbers of some hippocampal neurons, but not others. The effects on hilar neuron numbers, observed as a result of such short periods of ethanol treatment, appeared to be transitory. (C) 2003 Wiley-Liss, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To evaluate the usefulness of gamma-glutamyltransferase (GGT) and mean corpuscular volume (MCV), as well as that of the CAGE questionnaire, in workplace screening for alcohol abuse/dependence. Methods: A total of 183 male employees were submitted to structured interviews (Structured Clinical Interview for DSM-IV 2.0 and CAGE questionnaire). Blood samples were collected. Diagnostic accuracy and odds ratio were determined for the CAGE, GGT and MCV. Results: The CAGE questionnaire presented the best sensitivity for alcohol dependence (91%; specificity, 87.8%) and for alcohol abuse (87.5%, specificity, 80.9%), which increased when the questionnaire was used in combination with GGT (sensitivity, 100% and 87.5%, respectively; specificity, 68% and 61.5, respectively). CAGE positive results and/or alterations in GGT were less likely to occur among employees not presenting alcohol abuse/ dependence than among those presenting such abuse (OR for CAGE = 13, p < 0.05; OR for CAGE-GGT = 11, p < 0.05) or dependence (OR for CAGE = 76, p < 0.0 1; OR for GGT = 5, p < 0.0 1). Employees not presenting alcohol abuse/dependence were also several times more likely to present negative CAGE or GGT results. Conclusions: The use short, simple questionnaires, combined with that of low-cost biochemical markers, such as GGT, can serve as an initial screening for alcohol-related problems, especially for employees in hazardous occupations. The data provided can serve to corroborate clinical findings. (C) 2008 Elsevier Ltd. All rights reserved.