474 resultados para ADENYLATE-CYCLASE
Resumo:
The direction of synaptic plasticity at the connection between parallel fibres (PFs) and Purkinje cells can be modified by PF stimulation alone. Strong activation (Hartell, 1996) or high frequency stimulation (Schreurs and Alkon, 1993) of PFs induced a long-term depression (LTD) of PF-mediated excitatory postsynaptic currents. Brief raised frequency molecular layer stimulation produced a cAMP-dependent long-temi potentiation (LTP) of field potential (FP) responses (Salin et al., 1998). Thin slices of cerebellar vermis were prepared from 14-21 day old male Wistar rats decapitated under Halothane anaesthesia. FP's were recorded from the Purkinje cell layer in response to alternate 0.2Hz activation of stimulating electrodes placed in the molecular layer. In the presence of picrotoxin, FPs displayed two tetrodotoxin-sensitive, negative-going components termed N1 and N2. EPs were graded responses with paired pulse facilitation and were selectively blocked by 101AM 6-cyano-7-nitroquinoxaline-2,3-dicne (CNQX) an antagonist at iy,-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type ionotropic glutamate receptors (AMPAR) suggesting that they were primarily PE-mediated. The effects of raised stimulus intensity (RS) and/or increased frequency (IF) activation of the molecular layer on FP responses were examined. In sagittai and transverse slices combined RS and IF molecular layer activation induced a LTD of the N2 component of FP responses. RSIF stimulation produced fewer incidences of LTD in sagittal slices when an inhibitor of nitric oxide synthase (NOS), guanylate cyclase (GC), protein kinase G (PKG) or the GABAB receptor antagonist CGP62349 was included into the perfusion medium. Application of a nitric oxide (NO) donor, a cyclic guanosine monophosphate (cGMP) analogue or a phosphodiesterase (PDE) type V inhibitor to prevent cGMP breakdown paired with IF stimulation produced an acute depression, Raised frequency (RF) molecular layer stimulation produced a slowly emerging LTD of N2 in sagittal slices that was largely blocked in the presence of NOS, cGMP or PKG inhibitors. In transverse slices RE stimulation produced a LTP of the N2 component that was prevented by an inhibitor of protein kinase A or NOS. Inhibition of cGMP-signalling frequently revealed an underlying potentiation suggesting that cGMP activity might mask the effects of cAMP. In sagittal slices RE stimulation resulted in a potentiation of FPs when the cAMP-specific PDE type IV inhibitor rolipram was incorporated into the perfusion medium. In summary, raised levels of PE stimulation can alter the synaptic efficacy at PF-Purkinje cell synapses. The results provide support for a role of NO/cGMP/PKG signalling in the induction of LTD in the cerebellar cortex and suggest that activation of GABAa receptors might also be important. The level of cyclic nucleotide-specific PDE activities may be crucial in determining the level of cGMP and CAMP activity and hence the direction of synaptic plasticity.
Resumo:
Changes in the strength of signalling between neurones are thought to provide a cellular substrate for learning and memory. In the cerebellar cortex, raising the frequency and the strength of parallel fibre (PF) stimulation leads to a long-term depression (LTD) of the strength of signalling at the synapse between PFs and Purkinje cells (PCs), which spreads to distant synapses to the same cell via a nitric oxide (NO) dependent mechanism. At the same synapse, but under conditions of reduced post-synaptic calcium activity, raised frequency stimulation (RFS) of PFs triggers a long-term potentiation of synaptic transmission. The aims of the work described in this thesis were to investigate the conditions necessary for LTD and LTP at this synapse following RFS and to identify the origins and second messenger cascades involved in the induction and spread of LTP and LTD. In thin, parasagittal cerebellar slices whole cell patch clamp recordings were made from PCs and the effects of RFS of one of two, independent PF inputs to the same PC were examined under a range of experimental conditions. Under conditions designed to reduce post-synaptic calcium activity, RFS to a single PF input led to LTP and a decreases in paired pulse facilitation (PPF) in both pathways. This heterosynaptic potentiation was prevented by inhibition of protein kinase A (PKA) or by inhibition of NO synthase with either 7-nitroindazole (7-NI) or NG Nitro-L-argenine methyl ester. Inhibition of guanylate cyclase (GC) or protein kinase G (PKG) had no effect. A similar potentiation was observed upon application of the adenylyl cyclase (AC) activator forskolin or the NO donor spermine NONOate. Both of these treatments also resulted in an increase in the frequency of mEPSCs, which provides further evidence for a presynaptic origin of LTP. Forskolin induced potentiation and the increase in mEPSC frequency were blocked by 7-NI. The styryl dye FM1-43, a fluorescent reporter of endo- and exocytosis, was also used to further examine the possible pre-synaptic origins of LTP. RFS or forskolin application enhanced FM1-43 de-staining and NOS inhibitors blocked this effect. Application of NONOate also enhanced FM1-43 de-staining. When post-synaptic calcium activity was less strictly buffered, RFS to a single PF input led to a transient potentiation that was succeeded by LTD in both pathways. This LTD, which resembled previously described forms, was prevented by inhibition of the NO/cGMP/PKG cascade. Modification of the AC/cAMP/PKA cascade had no effect. In summary, the direction of synaptic plasticity at the PF-PC synapse in response to RFS depends largely on the level of post-synaptic calcium activity. LTP and LTD were non-input specific and both forms of plasticity were dependent on NOS activity. Induction of LTP was mediated by a presynaptic mechanism and depended on NO and cAMP production. LTD on the other hand was a post-synaptic process and required activity of the NO/cGMP/PKG signalling cascade.
Resumo:
Free nitric oxide (NO) reacts with sulphydryl residues to form S-nitrosothiols, which act as NO reservoirs. We sought to determine whether thiol-preserving agents and antioxidants, such as dithiothreitol (DTT) and vitamin C, induce NO release from S-nitrosylated proteins in endothelial cell cultures to promote angiogenesis. NO release was measured directly in cell supernatants using a Sievers NO Analyser, and in vitro angiogenesis was assessed by quantifying capillary-like tube network formation of porcine aortic endothelial cells (PAEC) on growth factor-reduced Matrigel. Incubation of PAEC with DTT or vitamin C significantly increased NO release in a concentration-dependent manner. However, the nitric oxide synthase (NOS) inhibitors, L-NNA and L-NIO, had no effect on DTT- or vitamin C-induced NO release, and there was no concomitant increase in the phosphorylation of endothelial NOS at serine-1177 following DTT or vitamin C treatment. DTT and vitamin C increased capillary-like tube network formation by nine- and two-fold, respectively, and the addition of copper ions doubled the effect of vitamin C. Surprisingly, DTT maintained endothelial tube networks for up to one month under serum-free conditions, and selective inhibitors of guanylyl cyclase (ODQ) and PKG (KT-5823) blocked this, demonstrating the requirement of cyclic GMP and PKG in this process. Both DTT and vitamin C are capable of releasing sufficient NO from S-nitrosothiols to induce capillary morphogenesis. This study provides the first evidence that increased denitrosylation leads to increased bioavailability of NO, independent of NOS activity, to promote sustained angiogenesis.
Resumo:
Vascular endothelial growth factor-A (VEGF), which binds to both VEGF receptor-1 (Flt1) and VEGFR-2 (KDR/Flk-1), requires nitric oxide (NO) to induce angiogenesis in a cGMP-dependent manner. Here we show that VEGF-E, a VEGFR-2-selective ligand stimulates NO release and tube formation in human umbilical vein endothelial cells (HUVEC). Inhibition of phospholipase Cgamma (PLCgamma) with U73122 abrogated VEGF-E induced endothelial cell migration, tube formation and NO release. Inhibition of endothelial nitric oxide synthase (eNOS) using l-NNA blocked VEGF-E-induced NO release and angiogenesis. Pre-incubation of HUVEC with the soluble guanylate cyclase inhibitor, ODQ, or the protein kinase G (PKG) inhibitor, KT-5823, had no effect on angiogenesis suggesting that the action of VEGF-E is cGMP-independent. Our data provide the first demonstration that VEGFR-2-mediated NO signaling and subsequent angiogenesis is through a mechanism that is dependent on PLCgamma but independent of cGMP and PKG.
Resumo:
Neurotransmitter release at CNS synapses occurs via both action potential-dependent and independent mechanisms, and it has generally been accepted that these two forms of release are regulated in parallel. We examined the effects of activation of group III metabotropic glutamate receptors (mGluRs) on stimulus-evoked and spontaneous glutamate release onto entorhinal cortical neurones in rats, and found a differential regulation of action potential-dependent and independent forms of release. Activation of presynaptic mGluRs depressed the amplitude of stimulus-evoked excitatory postsynaptic currents, but concurrently enhanced the frequency of spontaneous excitatory currents. Moreover, these differential effects on glutamate release were mediated by pharmacologically separable mechanisms. Application of the specific activator of adenylyl cyclase, forskolin, mimicked the effect of mGluR activation on spontaneous, but not evoked release, and inhibition of adenylyl cyclase with 9-tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536) blocked mGluR-mediated enhancement of spontaneous release, but not depression of evoked release. Occlusion studies with calcium channel blockers suggested that the group III mGluRs might depress evoked release through inhibition of both N and P/Q, but not R-type calcium channels. We suggest that the concurrent depression of action potential-evoked, and enhancement of action potential-independent glutamate release operate through discrete second messenger/effector systems at excitatory entorhinal terminals in rat brain. © 2007 IBRO.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The second messenger c-di-GMP is implicated in regulation of various aspects of the lifestyles and virulence of Gram-negative bacteria. Cyclic di-GMP is formed by diguanylate cyclases with a GGDEF domain and degraded by phosphodiesterases with either an EAL or HD-GYP domain. Proteins with tandem GGDEF-EAL domains occur in many bacteria, where they may be involved in c-di-GMP turnover or act as enzymatically-inactive c-di-GMP effectors. Here, we report a systematic study of the regulatory action of the eleven GGDEF-EAL proteins in Xanthomonas oryzae pv. oryzicola, an important rice pathogen causing bacterial leaf streak. Mutational analysis revealed that XOC_2335 and XOC_2393 positively regulate bacterial swimming motility, while XOC_2102, XOC_2393 and XOC_4190 negatively control sliding motility. The ΔXOC_2335/XOC_2393 mutant that had a higher intracellular c-di-GMP level than the wild type and the ΔXOC_4190 mutant exhibited reduced virulence to rice after pressure inoculation. In vitro purified XOC_4190 and XOC_2102 have little or no diguanylate cyclase or phosphodiesterase activity, which is consistent with unaltered c-di-GMP concentration in ΔXOC_4190. Nevertheless, both proteins can bind to c-di-GMP with high affinity, indicating a potential role as c-di-GMP effectors. Overall our findings advance understanding of c-di-GMP signaling and its links to virulence in an important rice pathogen.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.