914 resultados para 3-dimensional power Doppler sonography
Resumo:
Pre-eclampsia, a pregnancy-specific disorder, contributes substantially to perinatal morbidity and mortality of both, mother and newborn. An increasing number of biochemical agents were evaluated as markers for predicting pre-eclampsia. None of them has been proved to be of clinical value yet. Much effort has been put into assessing novel potential markers and their combination with other screening methods such as Doppler sonography. The purpose of this review is to reflect the current knowledge of serum markers for predicting pre-eclampsia. So far, the most promising serum markers are placental protein 13 (PP-13), as well as soluble fms-like tyrosine kinase-1 (sFlt-1), placental growth factor (PIGF) and soluble endoglin (sEng). These markers allow screening at a relatively early stage and, most importantly, show relatively high predictive values and improved diagnostic performance if combined with first trimester Doppler sonography. Large-scale prospective studies, assessing these markers, are important to justify their clinical use in view of early intervention to prevent pre-eclampsia in the future.
Resumo:
BACKGROUND: Based on a previous clinical case report in which the pedicled subcostal artery perforator flap allowed for the closure of a large defect of the lumbar region, the present study was designed to investigate the anatomy of the subcostal artery perforator flap and to evaluate its potential for wider clinical use. METHODS: A series of 14 human cadavers was studied and 28 subcostal artery perforator flaps were dissected. The location of the perforator vessel was charted against anatomical landmarks. Measurements included the perforator calibre, pedicle length, and flap size following methylene blue injection. The findings were compared by Doppler sonography in 15 volunteers. RESULTS: The subcostal artery perforator was present in all dissected specimens and in all volunteers. Its calibre measured in mean 2mm. The location was constant at the lateral border of the latissimus dorsi muscle and between 1 and 3cm below the lower rib end. The pedicle length reached a mean of 10.5cm when dissected up to the border of the erector spinae musculature. The vascular supply covered a mean flap size of 10x14cm. The in vivo investigations confirmed the constant perforator location from the anatomical landmarks. CONCLUSION: This anatomical study reveals a considerable potential for the clinical use of the subcostal artery perforator flap for defect coverage in the lumbar area, due to its constant and reliable anatomy. Doppler sonography can be helpful in preoperative assessment of the size and the position of the subcostal perforator, thus allowing for an optimal flap design.
Resumo:
Because of superior soft-tissue contrast compared to other imaging techniques, non-invasive abdominal magnetic resonance imaging (MRI) is ideal for monitoring organ regeneration, tissue repair, cancer stage, and treatment effects in a wide variety of experimental animal models. Currently, sophisticated MR protocols, including technically demanding procedures for motion artefact compensation, achieve an MRI resolution limit of < 100 microm under ideal conditions. However, such a high spatial resolution is not required for most experimental rodent studies. This article describes both a detailed imaging protocol for MR data acquisition in a ubiquitously and commercially available 1.5 T MR unit and 3-dimensional volumetry of organs, tissue components, or tumors. Future developments in MR technology will allow in vivo investigation of physiological and pathological processes at the cellular and even the molecular levels. Experimental MRI is crucial for non-invasive monitoring of a broad range of biological processes and will further our general understanding of physiology and disease.
Resumo:
In a cross-cultural study perceptions of local people living in the surroundings of biosphere reserves in Switzerland and Ukraine were examined using the method of qualitative interviews. In the UNESCO Biosphere Entlebuch in Switzerland people stated that they hoped for a better regional economic development due to the existence of the biosphere reserve. However, at the same time people feared further restrictions regarding land-use. In the Carpathian Biosphere Reserve located in Transcarpathia/Ukraine people tended to connect certain conditions – such as the high price for wood – directly to the existence of the biosphere reserve, when in fact these conditions and the biosphere reserve were separate, parallel developments. In both case studies three key-categories influencing local residents’ perceptions and evaluations of biosphere reserves could be identified. These categories are (1) the economic situation, (2) the history of nature protection, and (3) the power balance between the involved stakeholders. Paying close attention to those three categories will help planners and managers of protected areas to better understand the reasoning of local residents for or against a biosphere reserve in their area.
Resumo:
PURPOSE: The aim of the study was to conduct a long-term prospective follow-up on the stability of soft tissues after bilateral sagittal split osteotomy (BSSO) with rigid internal fixation to set back the mandible. PATIENTS AND METHODS: Seventeen consecutive patients (6 females, 11 males) were re-examined 12.7 years (T5) after surgery. The precedent follow-ups included: before surgery (T1), 5 days (T2) after surgery, 6.6 months (T3) after surgery, and 14.4 months after (T4) surgery. Lateral cephalograms were traced by hand, digitized, and evaluated with the Dentofacial Planner program (Dentofacial Software, Toronto, Canada). The x-axis for the system of coordinates ran through Sella (point 0) and the line NSL -7 degrees. RESULTS: The net effect of the soft tissue chin (soft tissue pogonion) was 79% of the setback at pogonion. At the lower lip (labrale inferior) it was 100% of the setback at lower incisor position. Point B' followed point B to 99%. Labrale inferior and menton' also showed a significant backward, as well as a downward, movement (T5 to T2). Gender correlated significantly (P = .004) with the anterior displacement of point B' and pogonion' (P = .012). The soft tissue relapse 12.7 years after BSSO setback surgery at point B' was 3% and 13% at pogonion'. CONCLUSION: Among the reasons for 3-dimensional long-term soft tissue changes of shape, the surgical technique, the normal process of human aging, the initial growth direction, and remodeling processes must be considered. Growth direction positively influenced the long-term outcome of setback surgery in female compared with male patients because further posterior movement of the mandibular soft tissue occurred.
Resumo:
We describe the case of a 59-year-old man who had aortic regurgitation and a hypoplastic aortic valve and for whom an echocardiography evaluation revealed a vascular tumor in the roof of the left atrium, which was suspected to be a hemangioma. After undergoing preoperative invasive catheter coronary angiography, echocardiography, and multislice computed tomography examinations, the patient underwent an aortic miniroot replacement. Intraoperative findings confirmed the findings of the preoperative evaluations. The tumor, although macroscopically verified as a hemangioma, was not resected because of the tumor's position and size, and the threat of uncontrollable bleeding. After an uneventful postoperative clinical course, a subsequent successful transcatheter coil occlusion of the coronary fistula from the left circumflex coronary artery was performed as an alternative to surgical resection of the tumor. This case emphasizes the future role of a multimodality hybrid approach for diagnosis, planning (different 2- and 3-dimensional imaging modalities), and treatment in the form of combining interventional (transcatheter) and surgical (open heart) techniques, which could optimize different treatment strategies. This approach could be further improved by increasing the installations of hybrid operating rooms.
Resumo:
The report explores the problem of detecting complex point target models in a MIMO radar system. A complex point target is a mathematical and statistical model for a radar target that is not resolved in space, but exhibits varying complex reflectivity across the different bistatic view angles. The complex reflectivity can be modeled as a complex stochastic process whose index set is the set of all the bistatic view angles, and the parameters of the stochastic process follow from an analysis of a target model comprising a number of ideal point scatterers randomly located within some radius of the targets center of mass. The proposed complex point targets may be applicable to statistical inference in multistatic or MIMO radar system. Six different target models are summarized here – three 2-dimensional (Gaussian, Uniform Square, and Uniform Circle) and three 3-dimensional (Gaussian, Uniform Cube, and Uniform Sphere). They are assumed to have different distributions on the location of the point scatterers within the target. We develop data models for the received signals from such targets in the MIMO radar system with distributed assets and partially correlated signals, and consider the resulting detection problem which reduces to the familiar Gauss-Gauss detection problem. We illustrate that the target parameter and transmit signal have an influence on the detector performance through target extent and the SNR respectively. A series of the receiver operator characteristic (ROC) curves are generated to notice the impact on the detector for varying SNR. Kullback–Leibler (KL) divergence is applied to obtain the approximate mean difference between density functions the scatterers assume inside the target models to show the change in the performance of the detector with target extent of the point scatterers.
Resumo:
Clinical magnetic resonance imaging (MRI) is the method of choice for the non-invasive evaluation of articular cartilage defects and the follow-up of cartilage repair procedures. The use of cartilage-sensitive sequences and a high spatial-resolution technique enables the evaluation of cartilage morphology even in the early stages of disease, as well as assessment of cartilage repair. Sequences that offer high contrast between articular cartilage and adjacent structures, such as the fat-suppressed, 3-dimensional, spoiled gradient-echo sequence and the fast spin-echo sequence, are accurate and reliable for evaluating intrachondral lesions and surface defects of articular cartilage. These sequences can also be performed together in reasonable examination times. In addition to morphology, new MRI techniques provide insight into the biochemical composition of articular cartilage and cartilage repair tissue. These techniques enable the diagnosis of early cartilage degeneration and help to monitor the effect and outcome of various surgical and non-surgical cartilage repair therapies.
Resumo:
The primary challenge in groundwater and contaminant transport modeling is obtaining the data needed for constructing, calibrating and testing the models. Large amounts of data are necessary for describing the hydrostratigraphy in areas with complex geology. Increasingly states are making spatial data available that can be used for input to groundwater flow models. The appropriateness of this data for large-scale flow systems has not been tested. This study focuses on modeling a plume of 1,4-dioxane in a heterogeneous aquifer system in Scio Township, Washtenaw County, Michigan. The analysis consisted of: (1) characterization of hydrogeology of the area and construction of a conceptual model based on publicly available spatial data, (2) development and calibration of a regional flow model for the site, (3) conversion of the regional model to a more highly resolved local model, (4) simulation of the dioxane plume, and (5) evaluation of the model's ability to simulate field data and estimation of the possible dioxane sources and subsequent migration until maximum concentrations are at or below the Michigan Department of Environmental Quality's residential cleanup standard for groundwater (85 ppb). MODFLOW-2000 and MT3D programs were utilized to simulate the groundwater flow and the development and movement of the 1, 4-dioxane plume, respectively. MODFLOW simulates transient groundwater flow in a quasi-3-dimensional sense, subject to a variety of boundary conditions that can simulate recharge, pumping, and surface-/groundwater interactions. MT3D simulates solute advection with groundwater flow (using the flow solution from MODFLOW), dispersion, source/sink mixing, and chemical reaction of contaminants. This modeling approach was successful at simulating the groundwater flows by calibrating recharge and hydraulic conductivities. The plume transport was adequately simulated using literature dispersivity and sorption coefficients, although the plume geometries were not well constrained.
Resumo:
This study reports on 15 mandibular reconstructions using the Dumbach Titan Mesh-System and particulate cancellous bone and marrow harvested from bilateral posterior ilia. All cases showed segmental defects. Eleven cases involved patients with malignant tumor. Six patients had received irradiation of 40-50 Gy. Reconstructions were performed immediately in 1 patient and secondarily in the remaining 14 patients. In 13 cases, mandibles were successfully reconstructed. Of these 13 patients, 9 reconstructions were completed without complications, whereas the other 4 cases showed complications. In 2 cases, reconstruction failed completely. Overall success rate was 87%. Statistical analysis revealed the extent of mandibular defect, but not malignancy of the original disease or radiotherapy of
Resumo:
BACKGROUND: Various osteotomy techniques have been developed to correct the deformity caused by slipped capital femoral epiphysis (SCFE) and compared by their clinical outcomes. The aim of the presented study was to compare an intertrochanteric uniplanar flexion osteotomy with a multiplanar osteotomy by their ability to improve postoperative range of motion as measured by simulation of computed tomographic data in patients with SCFE. METHODS: We examined 19 patients with moderate or severe SCFE as classified based on slippage angle. A computer program for the simulation of movement and osteotomy developed in our laboratory was used for study execution. According to a 3-dimensional reconstruction of the computed tomographic data, the physiological range was determined by flexion, abduction, and internal rotation. The multiplanar osteotomy was compared with the uniplanar flexion osteotomy. Both intertrochanteric osteotomy techniques were simulated, and the improvements of the movement range were assessed and compared. RESULTS: The mean slipping and thus correction angles measured were 25 degrees (range, 8-46 degrees) inferior and 54 degrees (range, 32-78 degrees) posterior. After the simulation of multiplanar osteotomy, the virtually measured ranges of motion as determined by bone-to-bone contact were 61 degrees for flexion, 57 degrees for abduction, and 66 degrees for internal rotation. The simulation of the uniplanar flexion osteotomy achieved a flexion of 63 degrees, an abduction of 36 degrees, and an internal rotation of 54 degrees. CONCLUSIONS: Apart from abduction, the improvement in the range of motion by a uniplanar flexion osteotomy is comparable with that of the multiplanar osteotomy. However, the improvement in flexion for the simulation of both techniques is not satisfactory with regard to the requirements of normal everyday life, in contrast to abduction and internal rotation. LEVEL OF EVIDENCE: Level III, Retrospective comparative study.
Resumo:
Lesion detection aids ideally aim at increasing the sensitivity of visual caries detection without trading off too much in terms of specificity. The use of a dental probe (explorer), bitewing radiography and fibre-optic transillumination (FOTI) have long been recommended for this purpose. Today, probing of suspected lesions in the sense of checking the 'stickiness' is regarded as obsolete, since it achieves no gain of sensitivity and might cause irreversible tooth damage. Bitewing radiography helps to detect lesions that are otherwise hidden from visual examination, and it should therefore be applied to a new patient. The diagnostic performance of radiography at approximal and occlusal sites is different, as this relates to the 3-dimensional anatomy of the tooth at these sites. However, treatment decisions have to take more into account than just lesion extension. Bitewing radiography provides additional information for the decision-making process that mainly relies on the visual and clinical findings. FOTI is a quick and inexpensive method which can enhance visual examination of all tooth surfaces. Both radiography and FOTI can improve the sensitivity of caries detection, but require sufficient training and experience to interpret information correctly. Radiography also carries the burden of the risks and legislation associated with using ionizing radiation in a health setting and should be repeated at intervals guided by the individual patient's caries risk. Lesion detection aids can assist in the longitudinal monitoring of the behaviour of initial lesions.
Resumo:
The anatomy of the human brain is organized as a complex arrangement of interrelated structures in three dimensional space. To facilitate the understanding of both structure and function, we have created a volume rendered brain atlas (VRBA) with an intuitive interface that allows real-time stereoscopic rendering of brain anatomy. The VRBA incorporates 2-dimensional and 3-dimensional texture mapping to display segmented brain anatomy co-registered with a T1 MRI. The interface allows the user to remove and add any of the 62 brain structures, as well as control the display of the MRI dataset. The atlas also contains brief verbal and written descriptions of the different anatomical regions to correlate structure with function. A variety of stereoscopic projection methods are supported by the VRBA and provide an abstract, yet simple, way of visualizing brain anatomy and 3-dimensional relationships between different nuclei.
Resumo:
PURPOSE Different international target volume delineation guidelines exist and different treatment techniques are available for salvage radiation therapy (RT) for recurrent prostate cancer, but less is known regarding their respective applicability in clinical practice. METHODS AND MATERIALS A randomized phase III trial testing 64 Gy vs 70 Gy salvage RT was accompanied by an intense quality assurance program including a site-specific and study-specific questionnaire and a dummy run (DR). Target volume delineation was performed according to the European Organisation for the Research and Treatment of Cancer guidelines, and a DR-based treatment plan was established for 70 Gy. Major and minor protocol deviations were noted, interobserver agreement of delineated target contours was assessed, and dose-volume histogram (DVH) parameters of different treatment techniques were compared. RESULTS Thirty European centers participated, 43% of which were using 3-dimensional conformal RT (3D-CRT), with the remaining centers using intensity modulated RT (IMRT) or volumetric modulated arc technique (VMAT). The first submitted version of the DR contained major deviations in 21 of 30 (70%) centers, mostly caused by inappropriately defined or lack of prostate bed (PB). All but 5 centers completed the DR successfully with their second submitted version. The interobserver agreement of the PB was moderate and was improved by the DR review, as indicated by an increased κ value (0.59 vs 0.55), mean sensitivity (0.64 vs 0.58), volume of total agreement (3.9 vs 3.3 cm(3)), and decrease in the union volume (79.3 vs 84.2 cm(3)). Rectal and bladder wall DVH parameters of IMRT and VMAT vs 3D-CRT plans were not significantly different. CONCLUSIONS The interobserver agreement of PB delineation was moderate but was improved by the DR. Major deviations could be identified for the majority of centers. The DR has improved the acquaintance of the participating centers with the trial protocol.
Resumo:
Meteorological or climatological extremes are rare and hence studying them requires long meteorological data sets. Moreover, for addressing the underlying atmospheric processes, detailed three-dimensional data are desired. Until recently the two requirements were incompatible as long meteorological series were only available for a few locations, whereas detailed 3-dimensional data sets such as reanalyses were limited to the past few decades. In 2011, the “Twentieth Century Reanalysis” (20CR) was released, a 6-hourly global atmospheric data set covering the past 140 years, thus combining the two properties. The collection of short papers in this volume contains case studies of individual extreme events in the 20CR data set. In this overview paper we introduce the first six cases and summarise some common findings. All of the events are represented in 20CR in a physically consistent way, allowing further meteorological interpretations and process studies. Also, for most of the events, the magnitudes are underestimated in the ensemble mean. Possible causes are addressed. For interpreting extrema it may be necessary to address individual ensemble members. Also, the density of observations underlying 20CR should be considered. Finally, we point to problems in wind speeds over the Arctic and the northern North Pacific in 20CR prior to the 1950s.