950 resultados para 290101 Fermentation, Biotechnology and Industrial Microbiology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short-chain fatty acids (SCFA) are formed from the fermentation of sugars by intestinal bacteria. Acetate is the most abundant SCFA, with lower amounts of propionate and butyrate formed. Propionate and butyrate are also formed from the products of carbohydrate fermentation by other bacteria, for example from lactate and acetate. SCFA play a role in regulating transit of digesta through the intestine, and butyrate formation is thought to be beneficial to health because butyrate decreases the risk of colon cancer. Major butyrate-producing species are among the most abundant present in the colon, including Roseburia and Faecalibacterium spp. Metabolism of longer-chain fatty acids occurs mainly by hydration or hydrogenation of unsaturated fatty acids. Hydroxystearic acids are formed in the intestine, particularly under disease conditions. Metabolism of linoleic acid results in the formation of conjugated linoleic acids (CLA) by several species, including Roseburia hominis and Roseburia inulinovorans. Enhancement of intestinal CLA formation, possibly using probiotics, may be useful in preventing or treating inflammatory bowel disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polydextrose is a randomly linked complex glucose oligomer that is widely used as a sugar replacer, bulking agent, dietary fiber and prebiotic. Polydextrose is poorly utilized by the host and, during gastrointestinal transit, it is slowly degraded by intestinal microbes, although it is not known which parts of the complex molecule are preferred by the microbes. The microbial degradation of polydextrose was assessed by using a simulated model of colonic fermentation. The degradation products and their glycosidic linkages were measured by combined gas chromatography and mass spectrometry, and compared to those of intact polydextrose. Fermentation resulted in an increase in the relative abundance of non-branched molecules with a concomitant decrease in single-branched glucose molecules and a reduced total number of branching points. A detailed analysis showed a preponderance of 1,6 pyranose linkages. The results of this study demonstrate how intestinal microbes selectively degrade polydextrose, and provide an insight into the preferences of gut microbiota in the presence of different glycosidic linkages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International Perspective The development of GM technology continues to expand into increasing numbers of crops and conferred traits. Inevitably, the focus remains on the major field crops of soybean, maize, cotton, oilseed rape and potato with introduced genes conferring herbicide tolerance and/or pest resistance. Although there are comparatively few GM crops that have been commercialised to date, GM versions of 172 plant species have been grown in field trials in 31 countries. European Crops with Containment Issues Of the 20 main crops in the EU there are four for which GM varieties are commercially available (cotton, maize for animal feed and forage, and oilseed rape). Fourteen have GM varieties in field trials (bread wheat, barley, durum wheat, sunflower, oats, potatoes, sugar beet, grapes, alfalfa, olives, field peas, clover, apples, rice) and two have GM varieties still in development (rye, triticale). Many of these crops have hybridisation potential with wild and weedy relatives in the European flora (bread wheat, barley, oilseed rape, durum wheat, oats, sugar beet and grapes), with escapes (sunflower); and all have potential to cross-pollinate fields non-GM crops. Several fodder crops, forestry trees, grasses and ornamentals have varieties in field trials and these too may hybridise with wild relatives in the European flora (alfalfa, clover, lupin, silver birch, sweet chestnut, Norway spruce, Scots pine, poplar, elm, Agrostis canina, A. stolonifera, Festuca arundinacea, Lolium perenne, L. multiflorum, statice and rose). All these crops will require containment strategies to be in place if it is deemed necessary to prevent transgene movement to wild relatives and non-GM crops. Current Containment Strategies A wide variety of GM containment strategies are currently under development, with a particular focus on crops expressing pharmaceutical products. Physical containment in greenhouses and growth rooms is suitable for some crops (tomatoes, lettuce) and for research purposes. Aquatic bioreactors of some non-crop species (algae, moss, and duckweed) expressing pharmaceutical products have been adopted by some biotechnology companies. There are obvious limitations of the scale of physical containment strategies, addressed in part by the development of large underground facilities in the US and Canada. The additional resources required to grow plants underground incurs high costs that in the long term may negate any advantage of GM for commercial productioNatural genetic containment has been adopted by some companies through the selection of either non-food/feed crops (algae, moss, duckweed) as bio-pharming platforms or organisms with no wild relatives present in the local flora (safflower in the Americas). The expression of pharmaceutical products in leafy crops (tobacco, alfalfa, lettuce, spinach) enables growth and harvesting prior to and in the absence of flowering. Transgenically controlled containment strategies range in their approach and degree of development. Plastid transformation is relatively well developed but is not suited to all traits or crops and does not offer complete containment. Male sterility is well developed across a range of plants but has limitations in its application for fruit/seed bearing crops. It has been adopted in some commercial lines of oilseed rape despite not preventing escape via seed. Conditional lethality can be used to prevent flowering or seed development following the application of a chemical inducer, but requires 100% induction of the trait and sufficient application of the inducer to all plants. Equally, inducible expression of the GM trait requires equally stringent application conditions. Such a method will contain the trait but will allow the escape of a non-functioning transgene. Seed lethality (‘terminator’ technology) is the only strategy at present that prevents transgene movement via seed, but due to public opinion against the concept it has never been trialled in the field and is no longer under commercial development. Methods to control flowering and fruit development such as apomixis and cleistogamy will prevent crop-to-wild and wild-to-crop pollination, but in nature both of these strategies are complex and leaky. None of the genes controlling these traits have as yet been identified or characterised and therefore have not been transgenically introduced into crop species. Neither of these strategies will prevent transgene escape via seed and any feral apomicts that form are arguably more likely to become invasives. Transgene mitigation reduces the fitness of initial hybrids and so prevents stable introgression of transgenes into wild populations. However, it does not prevent initial formation of hybrids or spread to non-GM crops. Such strategies could be detrimental to wild populations and have not yet been demonstrated in the field. Similarly, auxotrophy prevents persistence of escapes and hybrids containing the transgene in an uncontrolled environment, but does not prevent transgene movement from the crop. Recoverable block of function, intein trans-splicing and transgene excision all use recombinases to modify the transgene in planta either to induce expression or to prevent it. All require optimal conditions and 100% accuracy to function and none have been tested under field conditions as yet. All will contain the GM trait but all will allow some non-native DNA to escape to wild populations or to non-GM crops. There are particular issues with GM trees and grasses as both are largely undomesticated, wind pollinated and perennial, thus providing many opportunities for hybridisation. Some species of both trees and grass are also capable of vegetative propagation without sexual reproduction. There are additional concerns regarding the weedy nature of many grass species and the long-term stability of GM traits across the life span of trees. Transgene stability and conferred sterility are difficult to trial in trees as most field trials are only conducted during the juvenile phase of tree growth. Bio-pharming of pharmaceutical and industrial compounds in plants Bio-pharming of pharmaceutical and industrial compounds in plants offers an attractive alternative to mammalian-based pharmaceutical and vaccine production. Several plantbased products are already on the market (Prodigene’s avidin, β-glucuronidase, trypsin generated in GM maize; Ventria’s lactoferrin generated in GM rice). Numerous products are in clinical trials (collagen, antibodies against tooth decay and non-Hodgkin’s lymphoma from tobacco; human gastric lipase, therapeutic enzymes, dietary supplements from maize; Hepatitis B and Norwalk virus vaccines from potato; rabies vaccines from spinach; dietary supplements from Arabidopsis). The initial production platforms for plant-based pharmaceuticals were selected from conventional crops, largely because an established knowledge base already existed. Tobacco and other leafy crops such as alfalfa, lettuce and spinach are widely used as leaves can be harvested and no flowering is required. Many of these crops can be grown in contained greenhouses. Potato is also widely used and can also be grown in contained conditions. The introduction of morphological markers may aid in the recognition and traceability of crops expressing pharmaceutical products. Plant cells or plant parts may be transformed and maintained in culture to produce recombinant products in a contained environment. Plant cells in suspension or in vitro, roots, root cells and guttation fluid from leaves may be engineered to secrete proteins that may be harvested in a continuous, non-destructive manner. Most strategies in this category remain developmental and have not been commercially adopted at present. Transient expression produces GM compounds from non-GM plants via the utilisation of bacterial or viral vectors. These vectors introduce the trait into specific tissues of whole plants or plant parts, but do not insert them into the heritable genome. There are some limitations of scale and the field release of such crops will require the regulation of the vector. However, several companies have several transiently expressed products in clinical and pre-clinical trials from crops raised in physical containment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fermentation properties and prebiotic potential of novel low molecular weight polysaccharides (LMWPs) derived from agar and alginate bearing seaweeds was investigated. Ten LMWPs were supplemented to pH, temperature controlled anaerobic batch cultures inoculated with human feces from three donors, in triplicate. Microbiota changes were monitored using Fluorescent in-situ hybridization and short chain fatty acids, the fermentation end products were analysed using gas chromatography. Of the ten LMWPs tested, Gelidium seaweed CC2253 of molecular weight 64.64 KDa showed a significant increase in bifidobacterial populations from log(10) 8.06 at 0 h to log(10) 8.55 at 24 h (p = 0.018). For total bacterial populations, alginate powder CC2238 produced a significant increase from log(10) 9.01 at 0 h to log(10) 9.58 at 24 h (p = 0.032). No changes were observed in the other bacterial groups tested viz. Bacteroides, Lactobacilli/Enterococci, Eubacterium rectale/Clostridium coccoides and Clostridium histolyticum. The polysaccharides also showed significant increases in total SCFA production, particularly acetic and propionic acids, indicating that they were readily fermented. In conclusion, some LMWPs derived from agar and alginate bearing seaweeds were fermented by gut bacteria and exhibited potential to be used a novel source of prebiotics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the fermentation properties of oligosaccharides derived from pectins and their parent polysaccharides, a 5-ml-working-volume, pH- and temperature-controlled fermentor was tested. Six pectic oligosaccharides representing specific substructures found within pectins were prepared. These consisted of oligogalacturonides (average degrees of polymerization [DP] of 5 and 9), methylated oligogalacturonides (average DP of 5), oligorhamnogalacturonides (average DP of 10 as a disaccharide unit of galacturonic acid and rhamnose), oligogalactosides (average DP of 5), and oligoarabinosides (average DP of 6). The influence of these carbohydrates on the human fecal microbiota was evaluated. Use of neutral sugar fractions resulted in an increase in Bifidobacterium populations and gave higher organic acid yields. The Bacteroides-Prevotella group significantly increased on all oligosaccharides except oligogalacturonides with an average DP of 5. The most selective substrates for bifidobacteria were arabinan, galactan, oligoarabinosides, and oligogalactosides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The surface properties of probiotic bacteria influence to a large extent their interactions within the gut ecosystem. There is limited amount of information on the effect of the production process on the surface properties of probiotic lactobacilli in relation to the mechanisms of their adhesion to the gastrointestinal mucosa. The aim of this work was to investigate the effect of the fermentation pH and temperature on the surface properties and adhesion ability to Caco-2 cells of the probiotic strain Lactobacillus rhamnosus GG. Results: The cells were grown at pH 5, 5.5, 6 (temperature 37 °C) and at pH 6.5 (temperature 25 °C, 30 °C and 37 °C), and their surfaces analysed by X-ray photoelectron spectrometry (XPS), Fourier transform infrared spectroscopy (FT-IR) and gel-based proteomics. The results indicated that for all the fermentation conditions, with the exception of pH 5, a higher nitrogen to carbon ratio and a lower phosphate content was observed at the surface of the bacteria, which resulted in a lower surface hydrophobicity and reduced adhesion levels to Caco-2 cells as compared to the control fermentation (pH 6.5, 37 oC). A number of adhesive proteins, which have been suggested in previous published works to take part in the adhesion of bacteria to the human gastrointestinal tract, were identified by proteomic analysis, with no significant differences between samples however. Conclusions: The temperature and the pH of the fermentation influenced the surface composition, hydrophobicity and the levels of adhesion of L. rhamnosus GG to Caco-2 cells. It was deduced from the data that a protein rich surface reduced the adhesion ability of the cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forty-nine typical and atypical enteropathogenic Escherichia coli (EPEC) strains belonging to different serotypes and isolated from humans, pets (cats and dogs), farm animals (bovines, sheep, and rabbits), and wild animals (monkeys) were investigated for virulence markers and clonal similarity by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The virulence markers analyzed revealed that atypical EPEC strains isolated from animals have the potential to cause diarrhea in humans. A close clonal relationship between human and animal isolates was found by MLST and PFGE. These results indicate that these animals act as atypical EPEC reservoirs and may represent sources of infection for humans. Since humans also act as a reservoir of atypical EPEC strains, the cycle of mutual infection of atypical EPEC between animals and humans, mainly pets and their owners, cannot be ruled out since the transmission dynamics between the reservoirs are not yet clearly understood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four rumen-fistulated Holstein heifers (134 +/- 1 kg initial BW) were used in a 4 x 4 Latin square design to determine the effects of delaying daily feed delivery time on intake, ruminal fermentation, behavior, and stress response. Each 3-wk experimental period was preceded by 1 wk in which all animals were fed at 0800 h. Feed bunks were cleaned at 0745 h and feed offered at 0800 h (T0, no delay), 0900 (T1), 1000 (T2), and 1100 (T3) from d1 to 21 with measurements taken during wk 1 and 3. Heifers were able to see each other at all times. Concentrate and barley straw were offered in separate compartments of the feed bunks, once daily and for ad libitum intake. Ruminal pH and saliva cortisol concentrations were measured at 0, 4, 8, and 12 h postfeeding on d 3 and 17 of each experimental period. Fecal glucocorticoid metabolites were measured on d 17. Increasing length of delay in daily feed delivery time resulted in a quadratic response in concentrate DMI (low in T1 and T2; P = 0.002), whereas straw DMI was greatest in T1 and T3 (cubic P = 0.03). Treatments affected the distribution of DMI within the day with a linear decrease observed between 0800 and 1200 h but a linear increase during nighttimes (2000 to 0800 h), whereas T1 and T2 had reduced DMI between 1200 and 1600 h (quadratic P = 0.04). Water consumption (L/d) was not affected but decreased linearly when expressed as liters per kilogram of DMI (P = 0.01). Meal length was greatest and eating rate slowest in T1 and T2 (quadratic P <= 0.001). Size of the first meal after feed delivery was reduced in T1 on d 1 (cubic P = 0.05) and decreased linearly on d 2 (P = 0.01) after change. Concentrate eating and drinking time (shortest in T1) and straw eating time (longest in T1) followed a cubic trend (P = 0.02). Time spent lying down was shortest and ruminating in standing position longest in T1 and T2. Delay of feeding time resulted in greater daily maximum salivary cortisol concentration (quadratic P = 0.04), which was greatest at 0 h in T1 and at 12 h after feeding in T2 (P < 0.05). Daily mean fecal glucocorticoid metabolites were greatest in T1 and T3 (cubic P = 0.04). Ruminal pH showed a treatment effect at wk 1 because of increased values in T1 and T3 (cubic P = 0.01). Delaying feed delivery time was not detrimental for rumen function because a stress response was triggered, which led to reduced concentrate intake, eating rate, and size of first meal, and increased straw intake. Increased salivary cortisol suggests that animal welfare is compromised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A synthetic version of the metal-regulated gene A (mrgA) promoter from Bacillus subtilis, which in this Gram-positive bacterium is negatively regulated by manganese, iron, cobalt, or copper turned out to promote high level of basal gene expression that is further enhanced by Co(II), Cd(II), Mn(II), Zn(II), Cu(II), or Ni(II), when cloned in the Gram-negative bacterium Cupriavidus metallidurans. Promoter activity was monitored by expression of the reporter gene coding for the enhanced green fluorescent protein (EGFP), and cellular intensity fluorescence was quantified by flow cytometry. Expression levels in C. metallidurans driven by the heterologous promoter, here called pan, ranged from 20- to 53-fold the expression level driven by the Escherichia coli lac promoter (which is constitutively expressed in C. metallidurans), whether in the absence or presence of metal ions, respectively. The pan promoter did also function in E. coli in a constitutive pattern, regardless of the presence of Mn(II) or Fe(II). In conclusion, the pan promoter proved to be a powerful tool to express heterologous proteins in Gram-negative bacteria, especially in C. metallidurans grown upon high levels of toxic metals, with potential applications in bioremediation. Biotechnol. Bioeng. 2010; 107: 469-477. (C) 2010 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of glucose concentration and other carbohydrates (monosaccharides: fructose, galactose, mannose; polyols: mannitol and sorbitol; disaccharides: lactose, sucrose and commercial sucrose; and industrial sugarcane molasses) were compared as sole carbon sources for the production of Botryosphaeran, an exopolysaccharide (EPS) produced by Botryosphaeria sp. The optimum glucose concentration for EPS production was 50 g 1(-1). With the exception of mannitol, the fungus produced EPS on all carbon sources studied, with highest yields occurring with sucrose followed by glucose. All EPS showed exclusively glucose after acid hydrolysis and monosaccharide analysis. FTIR spectroscopy demonstrated the presence of beta-anomers indicating that all the EPS produced by Botryosphaeria sp. on the different carbon sources were essentially of the beta-D-glucan type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports on the effects of growth temperature on the secretion and some properties of the xylanase and beta-xylosidase activities produced by a thermotolerant Aspergillus phoenicis. Marked differences were observed when the organism was grown on xylan-supplemented medium at 25 degreesC or 42 degreesC. Production of xylanolytic enzymes reached maximum levels after 72 h of growth at 42 degreesC; and levels were three- to five-fold higher than at 25 degreesC. Secretion of xylanase and beta-xylosidase was also strongly stimulated at the higher temperature. The optimal temperature was 85 degreesC for extracellular and 90 degreesC for intracellular beta-xylosidase activity, independent of the growth temperature. The optimum temperature for extracellular xylanase increased from 50 degreesC to 55 degreesC when the fungus was cultivated at 42 degreesC. At the higher temperature, the xylanolytic enzymes produced by A. phoenicis showed increased thermo stability, with changes in the profiles of pH optima. The chromatographic profiles were distinct when samples obtained from cultures grown at different temperatures were eluted from DEAE-cellulose and Biogel P-60 columns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feathers are rich in amino acids and can be employed as a dietary protein supplement for animal feed. Microbial degradation is an alternative technology for improving the nutritional value of feathers. Other potential applications of keratinase include use in the leather industry, detergents and medicine as well as the pharmaceutical for the treatment of acne, psoriasis and calluses. A new keratinolytic enzyme production bacterium was isolated from a poultry processing plant. To improve keratinase yield, statistically based experimental designs were applied to optimize three significant variables: temperature, substrate concentration (feathers) and agitation speed. Response surface methodology demonstrated an increase in keratinolytic activity at temperature, agitation speed and substrate concentration of 26.6°C, 150 rpm and 2%, respectively. Liquid chromatography revealed the release of amino acids in the Bacillus amyloliquefaciens culture broth, thereby demonstrating the potential of feather meal in the animal feed industry. © Global Science Publications.