821 resultados para 080600 INFORMATION SYSTEMS
Resumo:
Enterprise systems interoperability (ESI) is an important topic for business currently. This situation is evidenced, at least in part, by the number and extent of potential candidate protocols for such process interoperation, viz., ebXML, BPML, BPEL, and WSCI. Wide-ranging support for each of these candidate standards already exists. However, despite broad acceptance, a sound theoretical evaluation of these approaches has not yet been provided. We use the Bunge-Wand-Weber (BWW) models, in particular, the representation model, to provide the basis for such a theoretical evaluation. We, and other researchers, have shown the usefulness of the representation model for analyzing, evaluating, and engineering techniques in the areas of traditional and structured systems analysis, object-oriented modeling, and process modeling. In this work, we address the question, what are the potential semantic weaknesses of using ebXML alone for process interoperation between enterprise systems? We find that users will lack important implementation information because of representational deficiencies; due to ontological redundancy, the complexity of the specification is unnecessarily increased; and, users of the specification will have to bring in extra-model knowledge to understand constructs in the specification due to instances of ontological excess.
Resumo:
The pervasiveness of information systems (IS) in organizations mandates the need for high levels of IS skills. In recognition, professional bodies impose IS course requirements for accreditation. For both students and employers, performance in IS courses has become important. The tertiary entrance overall performance score accounted for 19.7 per cent of the variance in students' passing grades. Thereafter, proficiency in office automation software and programming accounted for 1.5 and 0.8 per cent of the variance, respectively. Students living in a stable, family home-based environment performed better and it is likely that this environment underpinned other factors affecting performance.
Resumo:
One of the obstacles to improved security of the Internet is ad hoc development of technologies with different design goals and different security goals. This paper proposes reconceptualizing the Internet as a secure distributed system, focusing specifically on the application layer. The notion is to redesign specific functionality, based on principles discovered in research on distributed systems in the decades since the initial development of the Internet. Because of the problems in retrofitting new technology across millions of clients and servers, any options with prospects of success must support backward compatibility. This paper outlines a possible new architecture for internet-based mail which would replace existing protocols by a more secure framework. To maintain backward compatibility, initial implementation could offer a web browser-based front end but the longer-term approach would be to implement the system using appropriate models of replication. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Information security devices must preserve security properties even in the presence of faults. This in turn requires a rigorous evaluation of the system behaviours resulting from component failures, especially how such failures affect information flow. We introduce a compositional method of static analysis for fail-secure behaviour. Our method uses reachability matrices to identify potentially undesirable information flows based on the fault modes of the system's components.
Resumo:
Electronic communications devices intended for government or military applications must be rigorously evaluated to ensure that they maintain data confidentiality. High-grade information security evaluations require a detailed analysis of the device's design, to determine how it achieves necessary security functions. In practice, such evaluations are labour-intensive and costly, so there is a strong incentive to find ways to make the process more efficient. In this paper we show how well-known concepts from graph theory can be applied to a device's design to optimise information security evaluations. In particular, we use end-to-end graph traversals to eliminate components that do not need to be evaluated at all, and minimal cutsets to identify the smallest group of components that needs to be evaluated in depth.
Resumo:
The problem of distributed compression for correlated quantum sources is considered. The classical version of this problem was solved by Slepian and Wolf, who showed that distributed compression could take full advantage of redundancy in the local sources created by the presence of correlations. Here it is shown that, in general, this is not the case for quantum sources, by proving a lower bound on the rate sum for irreducible sources of product states which is stronger than the one given by a naive application of Slepian-Wolf. Nonetheless, strategies taking advantage of correlation do exist for some special classes of quantum sources. For example, Devetak and Winter demonstrated the existence of such a strategy when one of the sources is classical. Optimal nontrivial strategies for a different extreme, sources of Bell states, are presented here. In addition, it is explained how distributed compression is connected to other problems in quantum information theory, including information-disturbance questions, entanglement distillation and quantum error correction.