969 resultados para (nahco3)-c-13
Resumo:
A set of AM-AA copolymer samples with the same comonomer content and different average molecular weight have been characterized by C-13 NMB and light scattering methods in this paper. The chemical composition (comonomer AA, mole content 16.9 +/- 1.1%) of these samples is uniform. the sequence of AA in the macromolecular chain is of alone and random distribution and the light scattering theory from polyelectrolyte in added-salt solutions is suitable for the AM-AA copolymers-0.12 mol/L NaCl water systems. The actual values of M(w), the second Virial coefficient A(2) and the mean square radius of gyration (R(2)), for the studied samples have been obtained. The relationships between the molecular parameters are as follows: A(2)=0.0619 ($) over bar M(w)(-0.24), < R(2) >(1/2)(t)= 0.0210 ($) over bar M(w)(0.54).
Resumo:
The anti-aging performance of blends of polystyrene (PS), styrene-butadiene triblock copolymers (SBS), and PS/styrene-butadiene (SB)-4A (Carm star SE block copolymer) has been studied by means of C-13 NMR techniques. It is found that the anti-aging performance of these kinds of blends largely depends on their miscibility with PS of different molecular weight M(PS). The larger the quantities of PS solubilized in polybutadiene (PBD) domains, the better the anti-aging performance of the blends. It is also found that the anti-aging performance of these blends has dependence on molecular architectures of the SE block copolymers. For the aged blends, the double bonds of PBD were broken, meanwhile serious cross-linking networks formed in the blends. The proposed anti-aging mechanism is that the PS solubilized in PBD domains can efficiently prevent oxygen molecules from diffusing into PBD domains, therefore, successfully stop the oxidative process of PBD.
Resumo:
In order to raise the room temperature ionic conductivity and improve the mechanical strength of a PEO-based polymer electrolyte, a non-crystalline two-component epoxy network was synthesized by curing diglycidyl ether of polyethylene glycol (DGEPEG) with triglycidyl ether of glycerol (TGEG) in the presence of LiClO4 salt, which acts in this system as both a ring opening catalyst and a source of ionic carrier. The structure of the precursors, the curing process and the cured films have been characterized by C-13 NMR, IR, DSC and ionic conductivity measurement techniques. The electrolyte system exhibits an ionic conductivity as high as similar to 10(-5) S/cm at 25 degrees C and is mechanically self-supportable. The dependence of ionic conductivity was investigated as a function of temperature, salt content, MW of PEG segment in DGEPEG and the proportion of DGEPEG in DGEPEG/TGEG ratio.
Resumo:
Local main chain dynamics of dissolved phenolphthalein polyethersulfone (PES-C) in solution with chloroform-d(1) were examined through C-13 NMR relaxation measurements. Spin-lattice relaxation times and NOE (nuclear Overhauser effects) factors were measured as a function of temperature. The relaxation data were interpreted in terms of main chain segmental motion by using the damped orientational diffusion model (DAMP) and the conformation jump model (VJGM) derived by Valeur, Jarry, Geny, and Monnerie. The simulation method used is N-SIMPLEX, which gives, in this study, a result of the object function less than 10(-4). Correlation times were obtained for the main chain motion of PES-C with these models and the results indicate that the main chain of PES-C are flexible. The comparison between PES-C and 1,2-polybutadiene is proposed. The distribution of the correlation time for the main chain motion by using VJGM model is discussed. The temperature dependence of correlation times for PES-C indicating the dynamical rigidity of its chains is obtained.
Resumo:
New comblike polymers(CP) have been synthesized by reacting monomethyl ether of polyethylene glycol(PEGME) with poly(methyl vinyl ether-alt-maleic anhydride)(MA) and endcapping the residual carboxylic acid with methanol. Butanone was selected as a solvent for the esterification reaction in order to obtain a completely soluble product. They were characterized by IR, C-13 NMR and elemental analysis.
Resumo:
The miscibilities of blends of homopolystyrene/styrene-butadiene/styrene (PS/SBS) and PS/SB-4A (4-arm star block copolymer) have been studied by dynamic mechanical analysis (DMA) and C-13 CPMAS NMR techniques. The results indicate that the miscibilities o
Resumo:
The relationship between molecular and crystalline structural characteristics of the ethylene -dimethylaminoethylmethacrylate copolymers (EDAM) was investigated and related to melt flow index MI and average gross content of DAM comonomer, in comparison with low density polyethylene (LDPE) produced by the common high-pressure radical polymerization process. Although the average molecular weight and its distribution are influenced predominantly by the polymerization conditions, DAM-content seems not to depend significantly on molecular weight according to the GPC-FT/IR measurement. Comonomer sequence distributions were determined quantitatively with the C-13-NMR spectra entirely assigned by DEPT and H-1-C-13 COSY techniques. The result suggests the alternating copolymerization tendency and surprisingly coincides with the simulation out-puts based on the assumption of continuous complete mixing reactor model, using Mayo-Lewis equation and the same Q-e values as previously reported on different types of copolymers such as EVA and St.DAM (VA;vinylacetate, St;styrene). It was confirmed by WAXD and SAXS analyses that the crystallinity X(c) and the thickness of lamellar crystal l(c) decreased with increasing DAM-content, whereas the a-lattice and b-lattice dimensions enlarged. X(c) and l(c) can definitely be correlated to the heats of fusion and crystallization measured by DSC. The average size of spherulites measured with light scattering photometry tends to be enlarged with decreasing molecular weight (increasing MI) and DAM-content.
Resumo:
The microstructure of two bicomponent and one tricomponent segmented copolymers, based on polydimethylsiloxane, poly(p-hydroxystyrene) or/and polysulfone, were investigated using an extended Goldman-Shen pulse sequence, proton spin-spin relaxation measurements, and C-13 and Si-29 NMR spectra. The results indicate that there exist four phases with different sizes, components and morphological structure in the segmented copolymers studied in this work, i. e., a rigid-chain phase of very slow motion, a rigid-chain-rich phase of slow motion, a flexible-chain-rich phase of fast motion and a flexible-chain phase of faster motion. The sizes of different domains, calculated from the spin diffusion rates, are about 50-100 angstrom for the flexible-chain-rich phase of fast motion and 200-300 angstrom for the flexible-chain phase of faster motion. The relative quantities of polydimethylsiloxane in the flexible-chain phase of fast motion are slightly different in different kinds of segmented copolymers.
Resumo:
[(Me4C2Cp2SmCl.MgCl2.3THF)THF]2 was prepared by the reaction of Me4C2Cp2MgCl2.4THF (Cp=C5H4, THF = tetrahydrofuran) with SmCl3 in THF. The crystals belong to triclinic space group P-1 with a 12.149(3), b 13.187(4), c 13.810(5) angstrom, alpha 117.23(2), beta 94.07(2), gamma 62.86(2)-degrees, V = 1723.9(1.0) angstrom3. In the molecular structure of the title compound there is a symmetrical centre and a quadrilateral formed by SM, Mg, Cl1, Cl2 atoms. Two centroids of the cyclopentadienyls, bridged by a tetramethylethano group form with three bridging chlorine atoms (Cl1, Cl2, Cl1a) a pseudo-trigonal bipyramid around Sm. Three oxygen atoms of THF and three chlorine atoMS (Cl1, Cl2, Cl3) constitute a distorted octahedron around Mg.
Resumo:
Blends of crystallizable poly(vinyl alcohol) (PVA) with poly(N-vinyl-2-pyrrolidone) (PVPy) were studied by C-13 cross-polarization/magic angle spinning (CP/MAS) n.m.r. and d.s.c. The C-13 CP/MAS spectra show that the blends were miscible on a molecular level over the whole composition range studied, and that the intramolecular hydrogen bonds of PVA were broken and intermolecular hydrogen bonds between PVA and PVPy formed when the two polymers were mixed. The results of a spin-lattice relaxation study indicate that blending of the two polymers reduced the average intermolecular distance and molecular motion of each component, even in the miscible amorphous phase, and that addition of PVPy into PVA has a definite effect on the crystallinity of PVA in the blends over the whole composition range, yet there is still detectable crystallinity even when the PVPy content is as high as 80 wt%. These results are consistent with those obtained from d.s.c. studies.
Resumo:
Polymers of methyl-iso-propyl fumarate, di-iso-propyl fumarate, di-t-butyl fumarate, di-s-butyl fumarate, di-s-amyl fumarate and di-cyclo-hexyl fumarate were prepared by radical polymerization. The structures of the polymers were examined by H-1-NMR, C-13-NMR and WAXD. Some properties of the polymers, including thermal properties, were examined.
Resumo:
The prediction, based on unsteady diffusion kinetics, of the enhancement of reactivity and incorporation of 1-hexadecene in its copolymerization with propylene on adding a small amount of ethylene (increase from 5,2 mol-% to 10,8 mol-% when 2% of ethylene was added, and to 16,1 mol-% when 5% was added) was verified in the terpolymerization of propylene/1-hexadecene/ethylene on a commercial Solvay-type delta-TiCl3 catalyst. The catalyst efficiency was thus also increased. These augmentations originate from the increase in diffusion coefficient of 1-hexadecene at the catalyst surface when the PP crystallinity decreases on introduction of ethylene. Calculation based on unsteady diffusion kinetics showed that the order of diffusion coefficients ethylene > propylene > 1-hexadecene is reversed as the monomer concentration increases when the monomers are not at their equilibrium concentration. Sequence distribution as determined by means of C-13 NMR revealed a tendency of blocky structure rather than a Bernoullian one. The terpolymer compositions obtained by means of an IR method developed in this work conform rather well with the NMR results. Results in this work not only support the unsteady diffusion kinetics but also provide a new route to prepare olefinic copolymer rubbers with heterogeneous titanium catalysts.
Resumo:
The title complex was synthesized and characterized by H-1, C-13, Sn-119 NMR and IR spectra. A single crystal X-ray diffraction study confirmed its molecular structure and revealed that 3,4,5-trimethoxy-benzoyl salicylahydrazone was a tridentate and approximately planar ligand. The complex crystallizes in the triclinic space group P1BAR with a = 9.208(3), b = 12.536(2), c = 12.187(4) angstrom, alpha = 113.12(2), beta = 90.58(2), gamma = 81.42(2), V = 1277.5(6) angstrom, Z = 2. The structure was refined to R = 0.033 and R(w) = 0.041 for 3944 observed independent reflections. The tin atom has a distorted trigonal bipyramidal coordination. The Sn-C bond lengths are 2.129(5) and 2.113(5) angstrom (av. 2.121(5) angstrom), the C-Sn-C angle is 123.3(2); the bond length between the tin atom and the chelating nitrogen is 2.173(3) angstrom. Two chain carbon atoms and the chelating nitrogen atom occupy the basal plane. The skeleton of two erect oxygen atoms and the tin atom is bent (O-Sn-O angle = 153.5(1)). In the complex, the ligand exists in the enol-form.
Resumo:
Poly-ortho-methylanilines (POT) in three states fully oxidized, fully reduced and oxidized in varying degrees were synthesized by the reaction of common POT (C-POT) having nearly equal amounts of benzenediamine and quinonediimine units with iodine or phenyl-hydrazine, and the resulting polymers were characterized by IR, C-13-NMR, SEM and elemental analysis. The results showed that the quinonediimine unit in C-POT could be reduced by phenylhydrazine to the benzenediamine unit, forming the polymer with low OD (oxidation degree) or in a fully reduced state and that iodine-oxidation resulted in the increase of quinonediimine unit and decrease of benzenediamine unit. The solubility and flexibility of the formed polymers depend strongly on the amount of quinonediimine unit in it. It is necessary to reduce the content of quinonediimine structure unit in order to improve the solubility of aniline-class polymers.
Resumo:
An extended Goldman-Shen pulse sequence was used to observe indirectly the proton spin diffusion in the blends of polystyrene (PS) with poly(2,6-dimethyl-1,4-phenylene oxides) (PPO). The results indicate that the average distance between PS and PPO is less than 5 angstrom in the intimately mixed phase, but there are heterogeneous domains on a 100-angstrom scale. The data of spin relaxation of carbons, T1(C), for homopolymers and their blends suggest that there is a strong pi-pi electron conjugation interaction between the aromatic rings of PS and those of PPO, while the aromatic rings of PPO drive the aromatic rings of PS to move cooperatively. It is the cooperative motion that markedly improves the impact strength of PS.