654 resultados para zirconia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perovskite-like ceramic materials present the general formula ABO3, where A is a rare earth element or an alkaline metal element, and B is a transition metal. These materials are strong candidates to assume the position of cathode in Solid Oxide Fuel Cells (SOFC), because they present thermal stability at elevated temperatures and interesting chemical and physical properties, such as superconductivity, dieletricity, magnetic resistivity, piezoelectricity, catalytic activity and electrocatalytic and optical properties. In this work the cathodes of Solid Oxide Fuel Cells with the perovskite structure of La1-xSrxMnO3 (x = 0.15, 0.22, 0.30) and the electrolyte composed of zirconia-stabilized-yttria were synthesized by the Pechini method. The obtained resins were thermal treatment at 300 ºC for 2h and the obtained precursors were characterized by thermal analysis by DTA and TG / DTG. The powder precursors were calcined at temperatures from 450 to 1350ºC and were analyzed using XRD, FTIR, laser granulometry, XRF, surface area measurement by BET and SEM methods. The pellets were sintered from the powder to the study of bulk density and thermal expansion

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work aims the preparation of filmes of strontium-doped lanthanum manganite (perovskita) yttria-stabilized zirconia (LSM-SDC) films deposited on substrate of YSZ by means of spin coating technique having as principal objective their application to solid oxide fuel cells of intermediate temperature. La0,8Sr0,2MnO3 and Ce0,8Sm0,2O1,9 were obtained by modified Pechini method by use of gelatin which act as polymerization agent. The powders obtained were characterized by Xray fluorescence, X ray diffraction, electronic scanning microscopy and the superficial area by BET method. The results obtained by X-ray fluorescence showed that the route adopted for obtention of powders was effective in the obtention of the compositions with close values to the stoichiometrics. Ethyl cellulose was used as pore-forming agent and mixed with the LSM-SDC powders in weight proportions of 1:24, 2:23 and 1:9. The films were sintered at 1150 °C for 4 h and characterized by X-ray diffraction and scanning electron microscopy technique (SEM) and atomic force. The phases quantification of the precursory powders and of the obtained films was carried through Rietveld method. According with the analysis of SEM, as the content of ethyl cellulose was increased, the pore distribution in films become more uniform and the pore size reduced. The methodology used for the obtention of the films was very efficient, considering a material was obtained with characteristics that were proper to the application as electrolyte/cathode system to solid oxide fuel cells

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work makes use of the Pechini process for synthesis of the solutions and the dip-coating process for the addition of zirconium oxide films pure and doped cerium metal substrates. The metals with ceramic substrates were subjected to severe conditions of salinity. The x-ray fluorescence of the substrate showed a great diversity of chemical elements. The x-ray diffraction of the samples showed the phase of iron substrate because the thickness of nano-thin film. Tests using an LPR probe showed that the film presents with zirconia corrosion independent of film thickness. The substrates of ZrO2-doped ceria showed low chemical attack of the salt in films with less than 15 dives. The results imply that ultrathin films are shown in protecting metallic substrates

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study five compositions were synthesized zirconia doped with cerium and neodymium ions in the system Ce10-xNdx Zr90O2 with 0,5 ≤ x ≤ 4,0 using the Pechini method. The powders were characterized by thermogravimetric analysis, differential thermal analysis, infrared spectroscopy and X-ray diffraction, with application of Rietveld refinement of the calcination temperatures of 350ºC/3h and 30 minutes at 900ºC/3h. All compositions stabilized with a mixture of cubic and tetragonal phase zirconia. The samples were pressed into bars and sintered at 1500°C/3h and 1500°C/6h, being characterized by Xray diffraction, with application of the Rietveld refinement, density and porosity using Archimedes method, scanning electron microscopy and resistance the three point bending. It has been observed the increase in strength with increasing sintering temperature for the compositions x = 2,0 and x = 4,0. For x = 2,0 the main phase was the cubic with 92,56% with crystallite size of 0,56 μm, density and porosity of 96,82% from 1,36%. For x = 4,0 was a mixture of cubic and tetragonal phase with 21% and 37,98%, respectively. The crystallite size was 54,21 nm and 49,64 nm with a density porosity of 97,45% and 1,32% respectively. In the analysis of the fracture surface was observed a greater amount of grain fracture intragranular type, which contribute to increase the mechanical strength of the ceramic. Increased addition of the neodymium ion in the crystal lattice of the zirconium showed a nearly linear behavior with increasing mechanical strength of the zirconia ceramic. Was obtained a bending resistance of 537 ± 38 MPa for the composition x = 2,0 predominantly attributed to cubic phase with 92,56%

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to compare the misfit vertical, horizontal and passivity of zirconia and cobalt-chromium frameworks fabricated for CAD / CAM technology and conventional method of casting. Sixteen frameworks in one-piece, were obtained from a metallic matrix containing three Brånemark compatible implants with regular platform (Titamax Cortical Ti, Neodent). Eight frameworks were fabricated by CAD / CAM system (NeoShape, Neodent): four in zirconia (ZirCAD) and four cobalt-chromium (CoCrcad). Eight other frameworks were obtained by conventional casting method: four cobalt-chromium with UCLA abutment premachined Co-Cr (CoCrUCci) and four cobalt-chromium with UCLA abutment castable (CoCrUCc). The fit vertical, horizontal and passivity by one-screw test were measured using scanning electron microscopy with magnification of 250x. Initially evaluated the passivity by one-screw test and subsequently to assess the vertical and horizontal misfit, tightened all the screws with a torque of 20 Ncm. Mean, standard deviation, minimum and maximum values were calculated for each group. Measurements of horizontal misfit were transformed into cumulative frequency for categorization of the variable and the group later comparison groups. To evaluate the existence of quantitative differences between the groups tested for vertical misfit and passivity, we used the Kruskal-Wallis test. The Mann-Whitney test was used to compare group to group statistical differences (p <0.05). Were observed the respective mean and standard deviation for vertical misfit and passivity in micrometers: ZirCAD (5.9 ± 3.6, 107.2 ± 36), CoCrcad (1.2 ± 2.2, 107.5 ± 26 ), CoCrUCci (11.8 ± 9.8, 124.7 ± 74), CoCrUCc (12.9 ± 11.0, 108.8 ± 85). There were statistical differences in measures of vertical misfit (p = 0.000). The Mann-Whitney test revealed statistical differences (p <0.05) between all groups except between CoCrUCci and CoCrUCc (p = 0.619). No statistical difference was observed for the passivity. In relation to the horizontal misfit groups ZirCAD and CoCrcad did not show best values in relation to CoCrUCci and CoCrUCc. Based on the results it can be concluded that frameworks fabricated by CAD / CAM technology had better values of vertical fit than those manufactured by the casting method, nevertheless, the passivity was not influenced by manufacturing technique and material used. The horizontal fit obtained by frameworks manufactured by CAD / CAM was not superior to those manufactured by casting. A lower variability in vertical adjustment and passivity was observed when frameworks were fabricated by CAD / CAM technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research was to evaluate the passivity and strain induced in infrastructures screwed on abutments, made by CAD/CAM technology, and to compare these samples with parts manufactured by conventional casting. Using CAD/CAM technology, 4 samples were made from zirconia (Zircad) and 4 samples were manufactured from cobaltchrome (CoCrcad). The control groups were 4 specimens of cobalt-chrome, made by onepiece casting (CoCrci), for a total of 12 infrastructures. To evaluate the passivity, the infraestructures were installed on the abutments. One end was tightened and the vertical gap between the infrastructure and the prosthetic abutment was measured with scanning electron microscopy (250×). The mean strain in these infrastructures was analyzed via the photoelasticity test. A significant difference (p = 0.000) in passivity was observed between the control (CoCrci) and sample groups (CoCrcad and CoCrci). CoCrcad exhibited the best value of passivity (48.76 ± 13.45 μm) and CoCrci the worst (187.55 ± 103.63 μm), Zircad presented an intermediate value (103.81 ± 43.15 μm). When compared to the other groups, CoCrci showed the highest mean strain around the implants (17.19 ± 7.22 kPa). It was concluded that the zirconia infrastructure made by CAD / CAM showed a higher vertical marginal misfit than those made in cobalt-chromium alloy with the same methodology, however, the tension generated in the implants was similar. The CAD/CAM technology is more accurate for passivity and mean strain of infrastructure screwed on abutments than conventional manufacturing techniques

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study used bovine ribs to comparatively assess the deformation, roughness, and mass loss for 3 different types of surface treatments with burs, used in osteotomies, for the installation of osseointegrated implants.Materials and Methods: The study used 25 bovine ribs and 3 types of helical burs (2.0 mm and 3.0 mm) for osteotomies during implant placement (a steel bur [G1], a bur with tungsten carbide film coating in a carbon matrix [G2], and a zirconia bur [G3]), which were subdivided into 5 subgroups: 1, 2, 3, 4, and 5, corresponding to 0, 10, 20, 30, and 40 perforations, respectively. The surface roughness (mean roughness [Ra], partial roughness, and maximum roughness) and mass (in grams) of all the burs were measured, and the burs were analyzed in a scanning electron microscope before and after use. Data were tabulated and statistically analyzed by use of the Kruskal-Wallis test, and when a statistically significant difference was found, the Dunn test was used.Results: There was a loss of mass in all groups (G1, G2, and G3), and this loss was gradual, according to the number of perforations made (1, 2, 3, 4, and 5). However, this difference was not statistically significant (P < .05). Regarding the roughness, G3 presented an increase in Ra, partial roughness, and maximum roughness (P < .05) compared with G2 and an increase in Ra compared with G1. There was no statistically significant difference (P > .05) between G1 and G2. The scanning electron microscopy analysis found areas of deformation in all the 2.0-mm samples, with loss of substrates, and this characteristic was more frequent in G3.Conclusions: The 2.0-mm zirconia burs had a greater loss of substrates and abrasive wear in the cutting area. They also presented an increased roughness when compared with the steel and the tungsten carbide coating film in carbon matrix. There was no statistically significant difference (P < .05) between G1 and G2 in any mechanical test carried out. (C) 2012 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 70:e608-e621, 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This three-dimensional finite element analysis study evaluated the effect of different material combinations on stress distribution within metal-ceramic and all-ceramic single implant-supported prostheses. Materials and Methods: Three-dimensional finite element models reproducing a segment of the maxilla with a missing left first premolar were created. Five groups were established to represent different superstructure materials: GP, porcelain fused to gold alloy; GR, modified composite resin fused to gold alloy; TP, porcelain fused to titanium; TR, modified composite resin fused to titanium; and ZP, porcelain fused to zirconia. A 100-N vertical force was applied to the contact points of the crowns. All models were fixed in the superior region of bone tissue and in the mesial and distal faces of the maxilla section. Stress maps were generated by processing with finite element software. Results: Stress distribution and stress values of supporting bone were similar for the GP, GR, TP, and ZP models (1,574.3 MPa, 1,574.3 MPa, 1,574.3 MPa, and 1,574.2 MPa, respectively) and different for the TR model (1,838.3 MPa). The ZP model transferred less stress to the retention screw (785 MPa) than the other groups (939 MPa for GP, 961 MPa for GR, 1,010 MPa for TP, and 1,037 MPa for TR). Conclusion: The use of different materials to fabricate a superstructure for a single implant-supported prosthesis did not affect the stress distribution in the supporting bone. The retention screw received less stress when a combination of porcelain and zirconia was used. Int J Oral Maxillofac Implants 2011;26:1202-1209

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)