969 resultados para zinc binding protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemoreception is a biological process essential for the survival of animals, as it allows the recognition of important volatile cues for the detection of food, egg-laying substrates, mates or predators, among other purposes. Furthermore, its role in pheromone detection may contribute to evolutionary processes such as reproductive isolation and speciation. This key role in several vital biological processes makes chemoreception a particularly interesting system for studying the role of natural selection in molecular adaptation. Two major gene families are involved in the perireceptor events of the chemosensory system: the odorant-binding protein (OBP) and chemosensory protein (CSP) families. Here, we have conducted an exhaustive comparative genomic analysis of these gene families in twenty Arthropoda species. We show that the evolution of the OBP and CSP gene families is highly dynamic, with a high number of gains and losses of genes, pseudogenes and independent origins of subfamilies. Taken together, our data clearly support the birth-and-death model for the evolution of these gene families with an overall high gene-turnover rate. Moreover, we show that the genome organization of the two families is significantly more clustered than expected by chance and, more important, that this pattern appears to be actively maintained across the Drosophila phylogeny. Finally, we suggest the homologous nature of the OBP and CSP gene families, dating back their MRCA (most recent common ancestor) to 380¿420 Mya, and we propose a scenario for the origin and diversification of these families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the various functions of proteins in biological systems is the transport of small molecules, for this purpose proteins have naturally evolved special mechanisms to allow both ligand binding and its subsequent release to a target site; a process fundamental to many biological processes. Transport of Vitamin E (a-tocopherol), a lipid soluble antioxidant, to membranes helps in the protection of polyunsaturated fatty acids against peroxidative damage. In this research, the ligand binding characteristics of several members of the CRALTRIO family of lipid binding proteins was examined; the recombinant human a-Tocopherol Transfer Protein (a-TIP), Supernatant Protein Factor (SPF)ffocopherol Associated Protein (TAP), Cellular Retinaldehyde Binding Protein (CRALBP) and the phosphatidylinositol transfer protein from S. cerevisiae Sec 14p. Recombinant Sec 14p was expressed and purified from E. coli for comparison of tocopherol binding to the two other recombinant proteins postulated to traffic a-tocopherol. Competitive binding assays using [3H]-a-tocopherol and Lipidex-l000 resin allowed determination of the dissociation constants ~) of the CRAL-TRIO proteins for a-tocopherol and - 20 hydrophobic ligands for evaluation of the possible biological relevance of the binding interactions observed. The KIs (nM) for RRR-a-tocopherol are: a-TIP: 25.0, Sec 14p: 373, CRALBP: 528 and SPFffAP: 615. This indicates that all proteins recognize tocopherol but not with the same affinity. Sec 14p bound its native ligand PI with a KI of381 whereas SPFffAP bound PI (216) and y-tocopherol (268) similarly in contrast to the preferential binding ofRRR-a-tocopherol by a-TIP. Efforts to adequately represent biologically active SPFff AP involved investigation of tocopherol binding for several different recombinant proteins derived from different constructs and in the presence of different potential modulators (Ca+2, Mg+2, GTP and GDP); none of these conditions enhanced or inhibited a-tocopherol binding to SPF. This work suggests that only aTTP serves as the physiological mediator of a-tocopherol, yet structural homology between proteins allows common recognition of similar ligand features. In addition, several photo-affmity analogs of a-tocopherol were evaluated for their potential utility in further elucidation of a-TTP function or identification of novel tocopherol binding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nematode Caenorhabditis elegans expresses two metallothioneins (MTs), CeMT-1 and CeMT-2, that are believed to be key players in the protection against metal toxicity. In this study, both isoforms were expressed in vitro in the presence of either Zn(II) or Cd(II). Metal binding stoichiometries and affinities were determined by ESI-MS and NMR, respectively. Both isoforms had equal zinc binding ability, but differed in their cadmium binding behaviour, with higher affinity found for CeMT-2. In addition, wild-type C. elegans, single MT knockouts and a double MT knockout allele were exposed to zinc (340 μm) or cadmium (25 μm) to investigate effects in vivo. Zinc levels were significantly increased in all knockout strains, but were most pronounced in the CeMT-1 knockout, mtl-1 (tm1770), while cadmium accumulation was highest in the CeMT-2 knockout, mtl-2 (gk125) and the double knockout mtl-1;mtl-2 (zs1). In addition, metal speciation was assessed by X-ray absorption fine-structure spectroscopy. This showed that O-donating, probably phosphate-rich, ligands play a dominant role in maintaining the physiological concentration of zinc, independently of metallothionein status. In contrast, cadmium was shown to coordinate with thiol groups, and the cadmium speciation of the wild-type and the CeMT-2 knockout strain was distinctly different to the CeMT-1 and double knockouts. Taken together, and supported by a simple model calculation, these findings show for the first time that the two MT isoforms have differential affinities towards Cd(II) and Zn(II) at a cellular level, and this is reflected at the protein level. This suggests that the two MT isoforms have distinct in vivo roles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 aminoacids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressorgene, with possible relevance for glioblastoma therapy. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

mRNA stability is modulated by elements in the mRNA transcript and their cognate RNA binding proteins. Poly(U) binding protein 1 (Pub1) is a cytoplasmic Saccharomyces cerevisiae mRNA binding protein that stabilizes transcripts containing AU-rich elements (AREs) or stabilizer elements (STEs). In a yeast two-hybrid screen, we identified nuclear poly(A) binding protein 2 (Nab2) as being a Pub1-interacting protein. Nab2 is an essential nucleocytoplasmic shuttling mRNA binding protein that regulates poly(A) tail length and mRNA export. The interaction between Pub1 and Nab2 was confirmed by copurification and in vitro binding assays. The interaction is mediated by the Nab2 zinc finger domain. Analysis of the functional link between these proteins reveals that Nab2, like Pub1, can modulate the stability of specific mRNA transcripts. The half-life of the RPS16B transcript, an ARE-like sequence-containing Pub1 target, is decreased in both nab2-1 and nab2-67 mutants. In contrast, GCN4, an STE-containing Pub1 target, is not affected. Similar results were obtained for other ARE- and STE-containing Pub1 target transcripts. Further analysis reveals that the ARE-like sequence is necessary for Nab2-mediated transcript stabilization. These results suggest that Nab2 functions together with Pub1 to modulate mRNA stability and strengthen a model where nuclear events are coupled to the control of mRNA turnover in the cytoplasm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc is an essential micronutrient for growth and development. Its deficiency causes growth retardation in children and adolescents. The present study analyzes the effect of zinc on growth hormone (GH) secretion, insulin-like growth factor 1 (IGF1), and insulin-like growth factor-binding protein 3 (IGFBP3) in normal children before puberty. Thirty normal children were studied, 15 boys and 15 girls, aged 6-9 years. They were orally supplemented with 5 mg Zn/day for 3 months and 0.06537 mg Zn/kg body weight was injected before and after oral supplementation. Dietary intake and anthropometric measurements were assessed at baseline and end of study. Plasma GH levels increased during intravenous zinc administration and IGF1 and IGFBP3 increased after oral zinc supplementation. There was a positive correlation between the areas under the curves of GH and zinc after oral supplementation. Zinc supplementation was possibly effective in improving the body zinc status of the children, secretory levels of IGF1 and IGFBP3, GH potentialization, and height.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc is an essential micronutrient that is crucial for many vital cellular functions such as DNA and protein synthesis, metabolism, and intracellular signaling. Therefore, the intracellular zinc concentration is tightly regulated by zinc transporters and zinc-binding proteins. The members of the SCL39 transporter family transport zinc into the cytosol. The SLC39A2 (hZIP2) protein is highly expressed in prostate epithelial cells and was found to be involved in prostate cancer development. Thus far, there is no specific modulator available for the SLC39 transporters. The aim of this study was to develop a screening assay for compound screening targeting hZIP2. Employing the pIRES2-DsRed Express 2 bicistronic vector, we detected human ZIP2 expression at the plasma membrane in transiently transfected HEK293 cells. Using the FLIPR Tetra fluorescence plate reader, we demonstrated that ZIP2 transports Cd(2+) with an apparent Km value of 53.96 nM at an extracellular pH of 6.5. The cadmium influx via hZIP2 was inhibited by zinc in a competitive manner. We found that hZIP2 activity can be measured using cadmium in the range of 0.1 to 10 µM with our assay. In summary, for the first time we developed an assay for human ZIP2 that can be adapted to other zinc transporters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amyloid β peptide (Aβ), the principal proteinaceous component of amyloid plaques in brains of Alzheimer’s disease patients, is derived by proteolytic cleavage of the amyloid precursor protein (APP). Proteolytic cleavage of APP by a putative α-secretase within the Aβ sequence precludes the formation of the amyloidogenic peptides and leads to the release of soluble APPsα into the medium. By overexpression of a disintegrin and metalloprotease (ADAM), classified as ADAM 10, in HEK 293 cells, basal and protein kinase C-stimulated α-secretase activity was increased severalfold. The proteolytically activated form of ADAM 10 was localized by cell surface biotinylation in the plasma membrane, but the majority of the proenzyme was found in the Golgi. These results support the view that APP is cleaved both at the cell surface and along the secretory pathway. Endogenous α-secretase activity was inhibited by a dominant negative form of ADAM 10 with a point mutation in the zinc binding site. Studies with purified ADAM 10 and Aβ fragments confirm the correct α-secretase cleavage site and demonstrate a dependence on the substrate’s conformation. Our results provide evidence that ADAM 10 has α-secretase activity and many properties expected for the proteolytic processing of APP. Increases of its expression and activity might be beneficial for the treatment of Alzheimer’s disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc finger domains are structures that mediate sequence recognition for a large number of DNA-binding proteins. These domains consist of sequences of amino acids containing cysteine and histidine residues tetrahedrally coordinated to a zinc ion. In this report, we present a means to selectively inhibit a zinc finger transcription factor with cobalt(III) Schiff-base complexes. 1H NMR spectroscopy confirmed that the structure of a zinc finger peptide is disrupted by axial ligation of the cobalt(III) complex to the nitrogen of the imidazole ring of a histidine residue. Fluorescence studies reveal that the zinc ion is displaced from the model zinc finger peptide in the presence of the cobalt complex. In addition, gel-shift and filter-binding assays reveal that cobalt complexes inhibit binding of a complete zinc finger protein, human transcription factor Sp1, to its consensus sequence. Finally, a DNA-coupled conjugate of the cobalt complexes selectively inhibited Sp1 in the presence of several other transcription factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on the transmission of human (Hu) prions to transgenic (Tg) mice suggested that another molecule provisionally designated protein X participates in the formation of nascent scrapie isoform of prion protein (PrPSc). We report the identification of the site at which protein X binds to the cellular isoform of PrP (PrPC) using scrapie-infected mouse (Mo) neuroblastoma cells transfected with chimeric Hu/MoPrP genes even though protein X has not yet been isolated. Substitution of a Hu residue at position 214 or 218 prevented PrPSc formation. The side chains of these residues protrude from the same surface of the C-terminal α-helix and form a discontinuous epitope with residues 167 and 171 in an adjacent loop. Substitution of a basic residue at positions 167, 171, or 218 also prevented PrPSc formation: at a mechanistic level, these mutant PrPs appear to act as “dominant negatives” by binding protein X and rendering it unavailable for prion propagation. Our findings seem to explain the protective effects of basic polymorphic residues in PrP of humans and sheep and suggest therapeutic and prophylactic approaches to prion diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human RIN1 was first characterized as a RAS binding protein based on the properties of its carboxyl-terminal domain. We now show that full-length RIN1 interacts with activated RAS in mammalian cells and defines a minimum region of 434 aa required for efficient RAS binding. RIN1 interacts with the “effector domain” of RAS and employs some RAS determinants that are common to, and others that are distinct from, those required for the binding of RAF1, a known RAS effector. The same domain of RIN1 that binds RAS also interacts with 14-3-3 proteins, extending the similarity between RIN1 and other RAS effectors. When expressed in mammalian cells, the RAS binding domain of RIN1 can act as a dominant negative signal transduction blocker. The amino-terminal domain of RIN1 contains a proline-rich sequence similar to consensus Src homology 3 (SH3) binding regions. This RIN1 sequence shows preferential binding to the ABL–SH3 domain in vitro. Moreover, the amino-terminal domain of RIN1 directly associates with, and is tyrosine phosphorylated by, c-ABL. In addition, RIN1 encodes a functional SH2 domain that has the potential to activate downstream signals. These data suggest that RIN1 is able to mediate multiple signals. A differential pattern of expression and alternate splicing indicate several levels of RIN1 regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent cloning of a rat brain phosphatidylinositol 3,4,5-trisphosphate binding protein, centaurin α, identified a novel gene family based on homology to an amino-terminal zinc-binding domain. In Saccharomyces cerevisiae, the protein with the highest homology to centaurin α is Gcs1p, the product of the GCS1 gene. GCS1 was originally identified as a gene conditionally required for the reentry of cells into the cell cycle after stationary phase growth. Gcs1p was previously characterized as a guanosine triphosphatase-activating protein for the small guanosine triphosphatase Arf1, and gcs1 mutants displayed vesicle-trafficking defects. Here, we have shown that similar to centaurin α, recombinant Gcs1p bound phosphoinositide-based affinity resins with high affinity and specificity. A novel GCS1 disruption strain (gcs1Δ) exhibited morphological defects, as well as mislocalization of cortical actin patches. gcs1Δ was hypersensitive to the actin monomer-sequestering drug, latrunculin-B. Synthetic lethality was observed between null alleles of GCS1 and SLA2, the gene encoding a protein involved in stabilization of the actin cytoskeleton. In addition, synthetic growth defects were observed between null alleles of GCS1 and SAC6, the gene encoding the yeast fimbrin homologue. Recombinant Gcs1p bound to actin filaments, stimulated actin polymerization, and inhibited actin depolymerization in vitro. These data provide in vivo and in vitro evidence that Gcs1p interacts directly with the actin cytoskeleton in S. cerevisiae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein transport to the lysosome-like vacuole in yeast is mediated by multiple pathways, including the biosynthetic routes for vacuolar hydrolases, the endocytic pathway, and autophagy. Among the more than 40 genes required for vacuolar protein sorting (VPS) in Saccharomyces cerevisiae, mutations in the four class C VPS genes result in the most severe vacuolar protein sorting and morphology defects. Herein, we provide complementary genetic and biochemical evidence that the class C VPS gene products (Vps18p, Vps11p, Vps16p, and Vps33p) physically and functionally interact to mediate a late step in protein transport to the vacuole. Chemical cross-linking experiments demonstrated that Vps11p and Vps18p, which both contain RING finger zinc-binding domains, are components of a hetero-oligomeric protein complex that includes Vps16p and the Sec1p homologue Vps33p. The class C Vps protein complex colocalized with vacuolar membranes and a distinct dense membrane fraction. Analysis of cells harboring a temperature-conditional vps18 allele (vps18tsf) indicated that Vps18p function is required for the biosynthetic, endocytic, and autophagic protein transport pathways to the vacuole. In addition, vps18tsf cells accumulated multivesicular bodies, autophagosomes, and other membrane compartments that appear to represent blocked transport intermediates. Overproduction of either Vps16p or the vacuolar syntaxin homologue Vam3p suppressed defects associated with vps18tsf mutant cells, indicating that the class C Vps proteins and Vam3p may functionally interact. Thus we propose that the class C Vps proteins are components of a hetero-oligomeric protein complex that mediates the delivery of multiple transport intermediates to the vacuole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The products of the recF, recO, and recR genes are thought to interact and assist RecA in the utilization of single-stranded DNA precomplexed with single-stranded DNA binding protein (Ssb) during synapsis. Using immunoprecipitation, size-exclusion chromatography, and Ssb protein affinity chromatography in the absence of any nucleotide cofactors, we have obtained the following results: (i) RecF interacts with RecO, (ii) RecF interacts with RecR in the presence of RecO to form a complex consisting of RecF, RecO, and RecR (RecF–RecO–RecR); (iii) RecF interacts with Ssb protein in the presence of RecO. These data suggested that RecO mediates the interactions of RecF protein with RecR and with Ssb proteins. Incubation of RecF, RecO, RecR, and Ssb proteins resulted in the formation of RecF–RecO–Ssb complexes; i.e., RecR was excluded. Preincubation of RecF, RecO, and RecR proteins prior to addition of Ssb protein resulted in the formation of complexes consisting of RecF, RecO, RecR, and Ssb proteins. These data suggest that one role of RecF is to stabilize the interaction of RecR with RecO in the presence of Ssb protein. Finally, we found that interactions of RecF with RecO are lost in the presence of ATP. We discuss these results to explain how the RecF–RecO–RecR complex functions as an anti-Ssb factor.