919 resultados para zero tolerance
Resumo:
Factorial pot experiments were conducted to compare the responses of GA-sensitive and GA-insensitive reduced height (Rht) alleles in wheat for susceptibility to heat and drought stress during booting and anthesis. Grain set (grains/spikelet) of near isogenic lines (NILs) was assessed following three day transfers to controlled environments imposing day temperatures (t) from 20 to 40°C. Transfers were during booting and/or anthesis and pots maintained at field capacity (FC) or had water withheld. Logistic responses (y = c/1+e-b(t -m)) described declining grain set with increasing t, and t5 was that fitted to give a 5% reduction in grain set. Averaged over NIL, t5 for anthesis at FC was 31.7±0.47°C (S.E.M, 26 d.f.). Drought at anthesis reduced t5 by <2°C. Maintaining FC at booting conferred considerable resistance to high temperatures (t5=33.9°C) but booting was particularly heat susceptible without water (t5 =26.5°C). In one background (cv. Mercia), for NILs varying at the Rht-D1 locus, there was progressive reduction in t5 with dwarfing and reduced gibberellic acid (GA) sensitivity (Rht-D1a, tall, 32.7±0.72; Rht-D1b, semi-dwarf, 29.5±0.85; Rht-D1c, severe dwarf, 24.2±0.72). This trend was not evident for the Rht-B1 locus, or for Rht-D1b in an alternative background (Maris Widgeon). The GA-sensitive severe dwarf Rht12 was more heat tolerant (t5=29.4±0.72) than the similarly statured GA-insensitive Rht-D1c. The GA-sensitive, semi-dwarfing Rht8 conferred greater drought tolerance in one experiment. Despite the effects of Rht-D1 alleles in Mercia on stress tolerance, the inconsistency of the effects over background and locus led to the conclusion that semi-dwarfing with GA-insensitivity did not necessarily increase sensitivity to stress at booting and flowering. In comparison to effects of semi-dwarfing alleles, responses to heat stress are much more dramatically affected by water availability and the precise growth stage at which the stress is experienced by the plants.
Resumo:
Increased central adiposity and abnormalities in glucose tolerance preceding type 2 diabetes can have demonstrable negative effects on cognitive function, even in ostensibly healthy, middle-aged females. The potential for GL manipulations to modulate glycaemic response and cognitive function in type 2 diabetes and obesity merits further investigation..
Resumo:
Isolated source monitoring recollection deficits indicate that abnormalities in glucose metabolism are not detrimental for global episodic memory processes. This enhances our understanding of how metabolic disorders are associated with memory impairments.
Resumo:
There is an increasing body of research investigating whether abnormal glucose tolerance is associated with cognitive impairments, the evidence from which is equivocal. A systematic search of the literature identified twenty-three studies which assessed either clinically defined impaired glucose tolerance (IGT) or variance in glucose tolerance within the clinically defined normal range (NGT). The findings suggest that poor glucose tolerance is associated with cognitive impairments, with decrements in verbal memory being most prevalent. However, the evidence for decrements in other domains was weak. The NGT studies report a stronger glucose tolerance-cognition association than the IGT studies, which is likely to be due to the greater number of glucose tolerance parameters and the more sensitive cognitive tests in the NGT studies compared to the IGT studies. It is also speculated that the negative cognitive impact of abnormalities in glucose tolerance increases with age, and that glucose consumption is most beneficial to individuals with poor glucose tolerance compared to individuals with normal glucose tolerance. The role of potential mechanisms are discussed.
Resumo:
Epigenetic modification of the genome via cytosine methylation is a dynamic process that responds to changes in the growing environment. This modification can also be heritable. The combination of both properties means that there is the potential for the life experiences of the parental generation to modify the methylation profiles of their offspring and so potentially to ‘pre-condition’ them to better accommodate abiotic conditions encountered by their parents. We recently identified high vapor pressure deficit (vpd)-induced DNA methylation at two gene loci in the stomatal development pathway and an associated reduction in leaf stomatal frequency.1 Here, we test whether this epigenetic modification pre-conditioned parents and their offspring to the more severe water stress of periodic drought. We found that three generations of high vpd-grown plants were better able to withstand periodic drought stress over two generations. This resistance was not directly associated with de novo methylation of the target stomata genes, but was associated with the cmt3 mutant’s inability to maintain asymmetric sequence context methylation. If our finding applies widely, it could have significant implications for evolutionary biology and breeding for stressful environments.
Resumo:
The glutamate decarboxylase (GAD) system has been shown to be important for the survival of Listeria monocytogenes in low pH environments. The bacterium can use this faculty to maintain pH homeostasis under acidic conditions. The accepted model for the GAD system proposes that the antiport of glutamate into the bacterial cell in exchange for γ-aminobutyric acid (GABA) is coupled to an intracellular decarboxylation reaction of glutamate into GABA that consumes protons and therefore facilitates pH homeostasis. Most strains of L. monocytogenes possess three decarboxylase genes (gadD1, D2 & D3) and two antiporter genes (gadT1 & gadT2). Here, we confirm that the gadD3 encodes a glutamate decarboxylase dedicated to the intracellular GAD system (GADi), which produces GABA from cytoplasmic glutamate in the absence of antiport activity. We also compare the functionality of the GAD system between two commonly studied reference strains, EGD-e and 10403S with differences in terms of acid resistance. Through functional genomics we show that EGD-e is unable to export GABA and relies exclusively in the GADi system, which is driven primarily by GadD3 in this strain. In contrast 10403S relies upon GadD2 to maintain both an intracellular and extracellular GAD system (GADi/GADe). Through experiments with a murinised variant of EGD-e (EGDm) in mice, we found that the GAD system plays a significant role in the overall virulence of this strain. Double mutants lacking either gadD1D3 or gadD2D3 of the GAD system displayed reduced acid tolerance and were significantly affected in their ability to cause infection following oral inoculation. Since EGDm exploits GADi but not GADe the results indicate that the GADi system makes a contribution to virulence within the mouse. Furthermore, we also provide evidence that there might be a separate line of evolution in the GAD system between two commonly used reference strains.
Resumo:
In 2006 the UK government announced a move to zero carbon homes by 2016. The demand posed a major challenge to policy makers and construction professionals entailing a protracted process of policy design. The task of giving content to this target is used to explore the role of evidence in the policy process. Whereas much literature on policy and evidence treats evidence as an external input, independent of politics, this paper explores the ongoing mutual constitution of both. Drawing on theories of policy framing and the sociology of classification, the account follows the story of a policy for Zero Carbon Homes from the parameters and values used to specify the target. Particular attention is given to the role of Regulatory Impact Assessments (RIAs) and to the creation of a new policy venue, the Zero Carbon Hub. The analysis underlines the way in which the choices about how to model and measure the aims potentially transforms them, the importance of policy venues for transparency and the role of RIAs in the authorization of particular definitions. A more transparent, open approach to policy formulation is needed in which the framing of evidence is recognized as an integral part of the policy process.
Resumo:
Callosobruchus maculatus has for years remained a serious menace in cowpea in Sub-Sahara Africa. The objective of this study was to investigate the effect of genotypic cowpea (Vigna unguiculata (L.) Walp) varieties, time and dose on C. maculatus exposed to powders of Piper guineense and Eugenia aromatica. Irrespective of duration and botanicals, bruchid reared on KDV showed the highest tolerance to both plant materials; while their counterparts from IAR48V were the most susceptible. Median lethal time (LT50) also varied according to the plant materials; with the highest in KDV reared bruchid [P. guineense: KDV (18.31), IAR48V (9.27), IFBV (13.17); E. aromatica: KDV (76.01), IAR48V (5.59), IFBV (6.49)]. There was a significant impact of cowpea variety (V), exposure time (T) and dose (D) on the tolerance of C. maculatus to both plant materials. The effect of all two-way (VxT, VxD, DxT) and three way interactions (V×T×D) on the tolerance of C. maculatus to both plant materials was also significant. Varietal effect was more pronounced in bruchids exposed to E. aromatica; while exposure time was more pronounced in bruchids exposed to P. guineense.
Resumo:
Aims Potatoes are a globally important source of food whose production requires large inputs of fertiliser and water. Recent research has highlighted the importance of the root system in acquiring resources. Here measurements, previously generated by field phenotyping, tested the effect of root size on maintenance of yield under drought (drought tolerance). Methods Twelve potato genotypes, including genotypes with extremes of root size, were grown to maturity in the field under a rain shelter and either irrigated or subjected to drought. Soil moisture, canopy growth, carbon isotope discrimination and final yields were measured. Destructively harvested field phenotype data were used as explanatory variables in a general linear model (GLM) to investigate yield under conditions of drought or irrigation. Results Drought severely affected the small rooted genotype Pentland Dell but not the large rooted genotype Cara. More plantlets, longer and more numerous stolons and stolon roots were associated with drought tolerance. Previously measured carbon isotope discrimination did not correlate with the effect of drought. Conclusions These data suggest that in-field phenotyping can be used to identify useful characteristics when known genotypes are subjected to an environmental stress. Stolon root traits were associated with drought tolerance in potato and could be used to select genotypes with resilience to drought.
Resumo:
The United Kingdom is committed to a raft of requirements to create a low-carbon economy. Buildings consume approximately 40% of UK energy demand. Any improvement on the energy performance of buildings therefore can significantly contribute to the delivery of a low-carbon economy. The challenge for the construction sector and its clients is how to meet the policy requirements to deliver low and zero carbon (LZC) buildings, which spans broader than the individual building level, to requirements at the local and regional levels, and wider sustainability pressures. Further, the construction sector is reporting skills shortages coupled with the need for ‘new skills’ for the delivery of LZC buildings. The aim of this paper is to identify, and better understand, the skills required by the construction sector and its clients for the delivery of LZC buildings within a region. The theoretical framing for this research is regional innovation system (RIS) using a socio-technical network analysis (STNA) methodology. A case study of a local authority region is presented. Data is drawn from a review of relevant local authority documentation, observations and semi-structured interviews from one (project 1) of five school retrofit projects within the region. The initial findings highlight the complexity surrounding the form and operation of the LZC network for project 1. The skills required by the construction sector and its clients are connected to different actor roles surrounding the delivery of the project. The key actors involved and their required skills are: project management and energy management skills required by local authority; project management skills (in particular project planning), communication and research skills required by school end-users; and a ‘technical skill’ relating to knowledge of a particular energy efficient measure (EEM) and use of equipment to implement the EEM is required by the EEM contractors.
Resumo:
Derivational morphological processes allow us to create new words (e.g. punish (V) to noun (N) punishment) from base forms. The number of steps from the basic units to derived words often varies (e.g., nationality
Resumo:
In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg−1 soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization.
Resumo:
The synthesis and characterization of the first anions containing two gallium-sulfide supertetrahedra linked via an organic moiety are described.
Resumo:
Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source 4 population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to nonacclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and induced thermotolerance, and may involve some but not other fitness-related traits.