929 resultados para year-class strength
Resumo:
With more constructivist approaches to learning in higher education and more value on teamwork skills, students’ oracy (speaking and listening) features more prominently in curriculum, pedagogy and assessment. The paper reports on a study of two first-year Australian university courses in disciplines with explicit industry orientations and high proportions of international students. Drawing on classroom observations and interviews with the lecturers, this paper investigates their pedagogical designs on oracy and the oracy demands of their assessment tasks. The study found that talk-based assessment tasks (a group project and a group oral presentation) featured in both courses but the two courses treated students’ oracy differently: as product or process. The contrast between the two assessment designs explicates issues around EAL student needs, authentic links to industry, the provenance of criteria used to assess performance, perceptions about the relevance of talk and the ‘hidden assessment’ of oracy.
Resumo:
THEATRE: The New Dead: Medea Material. By Heiner Muller. Stella Electrika in association with La Boite Theatre Company, Brisbane, November 19. THERE has been a lot of intensity in independent theatre in Brisbane during the past year, as companies, production houses and producers have begun building new programs and platforms to support an expansion of pathways within the local theatre ecology. Audiences have been exposed to works signalling the diversity of what Brisbane theatre makers want to see on stage, from productions of new local and international pieces to new devised works, and the results of residencies and development programs. La Boite Theatre Company closes its inaugural indie season with a work that places it at the contemporary, experimental end of the spectrum. The New Dead: Medea Material is emerging director Kat Henry's interpretation of Heiner Muller's 1981 text Despoiled Shore Medea Material Landscape with Argonauts. Start of sidebar. Skip to end of sidebar. End of sidebar. Return to start of sidebar. Muller is known for his radical adaptations of historical dramas, from the Greeks to Shakespeare, and for deconstructed texts in which the characters - in this case, Medea - violently reject the familial, cultural and political roles society has laid out for them. Muller's combination of deconstructed characters, disconnected poetic language and constant references to aspects of popular culture and the Cold War politics he sought to abjure make his texts challenging to realise. The poetry entices but the density, together with the increasing distance of the Cold War politics in the texts, leaves contemporary directors with clear decisions to make about how to adapt these open texts. In The New Dead: Medea Material, Henry works with some interesting imagery and conceptual territory. Lucinda Shaw as Medea, Guy Webster as Jason and Kimie Tsukakoshi as King Creon's daughter Glauce, the woman for whom Jason forsakes his wife Medea, each reference different aspects of contemporary culture. Medea is a bitter, drunken, satin-gowned diva with bite; Jason - first seen lounging in front of the television with a beer in an image reminiscent of Sarah Kane's in-yer-face characterisation of Hippolytus in Phaedra's Love - has something of the rock star about him; and Glauce is a roller-skating, karaoke-singing, pole-dancing young temptress. The production is given a contemporary tone, dominated by Medea's twisted love and loss, rather than by any commentary on her circumstances. Its strength is the aesthetic Henry creates, supported by live electro-pop music, a band stage that stands as a metaphor for Jason's sea voyage, and multimedia that inserts images of the story unfolding beyond these characters' speeches as sorts of subconscious flashes. While Tsukakoshi is engaging throughout, there are moments when Shaw and Webster's performances - particularly in the songs - are diminished by a lack of clarity. The result is a piece that, while slightly lacking in its realisation at times, undoubtedly flags Henry's facility as an emerging director and what she wants to bring to the Brisbane theatre scene.
Resumo:
The development and use of a virtual assessment tool for a signal processing unit is described. It allows students to take a test from anywhere using a web browser to connect to the university server that hosts the test. While student responses are of the multiple choice type, they have to work out problems to arrive at the answer to be entered. CGI programming is used to verify student identification information and record their scores as well as provide immediate feedback after the test is complete. The tool has been used at QUT for the past 3 years and student feedback is discussed. The virtual assessment tool is an efficient alternative to marking written assignment reports that can often take more hours than actual lecture hall contact from a lecturer or tutor. It is especially attractive for very large classes that are now the norm at many universities in the first two years.
Resumo:
Three recent papers published in Chemical Engineering Journal studied the solution of a model of diffusion and nonlinear reaction using three different methods. Two of these studies obtained series solutions using specialized mathematical methods, known as the Adomian decomposition method and the homotopy analysis method. Subsequently it was shown that the solution of the same particular model could be written in terms of a transcendental function called Gauss’ hypergeometric function. These three previous approaches focused on one particular reactive transport model. This particular model ignored advective transport and considered one specific reaction term only. Here we generalize these previous approaches and develop an exact analytical solution for a general class of steady state reactive transport models that incorporate (i) combined advective and diffusive transport, and (ii) any sufficiently differentiable reaction term R(C). The new solution is a convergent Maclaurin series. The Maclaurin series solution can be derived without any specialized mathematical methods nor does it necessarily involve the computation of any transcendental function. Applying the Maclaurin series solution to certain case studies shows that the previously published solutions are particular cases of the more general solution outlined here. We also demonstrate the accuracy of the Maclaurin series solution by comparing with numerical solutions for particular cases.
Resumo:
In a randomized, double-blind study, 202 healthy adults were randomized to receive a live, attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) and placebo 28 days apart in a cross-over design. A subgroup of 98 volunteers received a JE-CV booster at month 6. Safety, immunogenicity, and persistence of antibodies to month 60 were evaluated. There were no unexpected adverse events (AEs) and the incidence of AEs between JE-CV and placebo were similar. There were three serious adverse events (SAE) and no deaths. A moderately severe case of acute viral illness commencing 39 days after placebo administration was the only SAE considered possibly related to immunization. 99% of vaccine recipients achieved a seroprotective antibody titer ≥ 10 to JE-CV 28 days following the single dose of JE-CV, and 97% were seroprotected at month 6. Kaplan Meier analysis showed that after a single dose of JE-CV, 87% of the participants who were seroprotected at month 6 were still protected at month 60. This rate was 96% among those who received a booster immunization at month 6. 95% of subjects developed a neutralizing titer ≥ 10 against at least three of the four strains of a panel of wild-type Japanese encephalitis virus (JEV) strains on day 28 after immunization. At month 60, that proportion was 65% for participants who received a single dose of JE-CV and 75% for the booster group. These results suggest that JE-CV is safe, well tolerated and that a single dose provides long-lasting immunity to wild-type strains
Resumo:
The draft Year 1 Literacy and Numeracy Checkpoints Assessments were in open and supported trial during Semester 2, 2010. The purpose of these trials was to evaluate the Year 1 Literacy and Numeracy Checkpoints Assessments (hereafter the Year 1 Checkpoints) that were designed in 2009 as a way to incorporate the use of the Year 1 Literacy and Numeracy Indicators as formative assessment in Year 1 in Queensland Schools. In these trials there were no mandated reporting requirements. The processes of assessment were related to future teaching decisions. As such the trials were trials of materials and the processes of using those materials to assess students, plan and teach in year 1 classrooms. In their current form the Year 1 Checkpoints provide assessment resources for teachers to use in February, June and October. They aim to support teachers in monitoring children's progress and making judgments about their achievement of the targeted P‐3 Literacy and Numeracy Indicators by the end of Year 1 (Queensland Studies Authority, 2010 p. 1). The Year 1 Checkpoints include support materials for teachers and administrators, an introductory statement on assessment, work samples, and a Data Analysis Assessment Record (DAAR) to record student performance. The Supported Trial participants were also supported with face‐to‐face and on‐line training sessions, involvement in a moderation process after the October Assessments, opportunities to participate in discussion forums as well as additional readings and materials. The assessment resources aim to use effective early years assessment practices in that the evidence is gathered from hands‐on teaching and learning experiences, rather than more formal assessment methods. They are based in a model of assessment for learning, and aim to support teachers in the “on‐going process of determining future learning directions” (Queensland Studies Authority, 2010 p. 1) for all students. Their aim is to focus teachers on interpreting and analysing evidence to make informed judgments about the achievement of all students, as a way to support subsequent planning for learning and teaching. The Evaluation of the Year 1 Literacy and Numeracy Checkpoints Assessments Supported Trial (hereafter the Evaluation) aimed to gather information about the appropriateness, effectiveness and utility of the Year 1 Checkpoints Assessments from early years’ teachers and leaders in up to one hundred Education Queensland schools who had volunteered to be part of the Supported Trial. These sample schools represent schools across a variety of Education Queensland regions and include schools with: - A high Indigenous student population; - Urban, rural and remote school locations; - Single and multi‐age early phase classes; - A high proportion of students from low SES backgrounds. The purpose of the Evaluation was to: Evaluate the materials and report on the views of school‐based staff involved in the trial on the process, materials, and assessment practices utilised. The Evaluation has reviewed the materials, and used surveys, interviews, and observations of processes and procedures to collect relevant data to help present an informed opinion on the Year 1 Checkpoints as assessment for the early years of schooling. Student work samples and teacher planning and assessment documents were also collected. The evaluation has not evaluated the Year 1 Checkpoints in any other capacity than as a resource for Year 1 teachers and relevant support staff.
Resumo:
In the past 20 years, mesoporous materials have been attracted great attention due to their significant feature of large surface area, ordered mesoporous structure, tunable pore size and volume, and well-defined surface property. They have many potential applications, such as catalysis, adsorption/separation, biomedicine, etc. [1]. Recently, the studies of the applications of mesoporous materials have been expanded into the field of biomaterials science. A new class of bioactive glass, referred to as mesoporous bioactive glass (MBG), was first developed in 2004. This material has a highly ordered mesopore channel structure with a pore size ranging from 5–20 nm [1]. Compared to non-mesopore bioactive glass (BG), MBG possesses a more optimal surface area, pore volume and improved in vitro apatite mineralization in simulated body fluids [1,2]. Vallet-Regí et al. has systematically investigated the in vitro apatite formation of different types of mesoporous materials, and they demonstrated that an apatite-like layer can be formed on the surfaces of Mobil Composition of Matters (MCM)-48, hexagonal mesoporous silica (SBA-15), phosphorous-doped MCM-41, bioglass-containing MCM-41 and ordered mesoporous MBG, allowing their use in biomedical engineering for tissue regeneration [2-4]. Chang et al. has found that MBG particles can be used for a bioactive drug-delivery system [5,6]. Our study has shown that MBG powders, when incorporated into a poly (lactide-co-glycolide) (PLGA) film, significantly enhance the apatite-mineralization ability and cell response of PLGA films. compared to BG [7]. These studies suggest that MBG is a very promising bioactive material with respect to bone regeneration. It is known that for bone defect repair, tissue engineering represents an optional method by creating three-dimensional (3D) porous scaffolds which will have more advantages than powders or granules as 3D scaffolds will provide an interconnected macroporous network to allow cell migration, nutrient delivery, bone ingrowth, and eventually vascularization [8]. For this reason, we try to apply MBG for bone tissue engineering by developing MBG scaffolds. However, one of the main disadvantages of MBG scaffolds is their low mechanical strength and high brittleness; the other issue is that they have very quick degradation, which leads to an unstable surface for bone cell growth limiting their applications. Silk fibroin, as a new family of native biomaterials, has been widely studied for bone and cartilage repair applications in the form of pure silk or its composite scaffolds [9-14]. Compared to traditional synthetic polymer materials, such as PLGA and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the chief advantage of silk fibroin is its water-soluble nature, which eliminates the need for organic solvents, that tend to be highly cytotoxic in the process of scaffold preparation [15]. Other advantages of silk scaffolds are their excellent mechanical properties, controllable biodegradability and cytocompatibility [15-17]. However, for the purposes of bone tissue engineering, the osteoconductivity of pure silk scaffolds is suboptimal. It is expected that combining MBG with silk to produce MBG/silk composite scaffolds would greatly improve their physiochemical and osteogenic properties for bone tissue engineering application. Therefore, in this chapter, we will introduce the research development of MBG/silk scaffolds for bone tissue engineering.
Resumo:
This paper describes and analyses the procurement processes employed in delivering the Sydney Olympic Stadium – arguably the most significant stadia project in the region today. This current high profile project is discussed in terms of a case study into the procurement processes used. Interviews, personal site visits and questionnaires were used to obtain information on the procurement processes used and comments on their application to the project. The alternative procurement process used on this project—Design and Construction within a Build, Own, Operate and Transfer (BOOT) project—is likely to impact on the construction industry as a whole. Already other projects and sectors are following this lead. Based on a series of on-site interviews and questionnaires, a series of benefits and drawbacks to this procurement strategy are provided.The Olympic Stadium project has also been further analysed during construction through a Degree of Interaction framework to determine anticipated project success. This analysis investigates project interaction and user satisfaction to provide a comparable rating. A series of questionnaires were used to collect data to calculate the Degree of Interaction and User Satisfaction ratings.
Resumo:
LiteSteel Beam (LSB) is a new cold-formed steel beam produced by OneSteel Australian Tube Mills (OATM). The new beam is effectively a channel section with two rectangular hollow flanges and a slender web, and is manufactured using patented dual electric resistance welding and automated roll-forming technologies. OATM is promoting the use of LSBs as flexural members in residential construction. When LSBs are used as back to back built-up sections, they are likely to improve their moment capacity. However, the research project conducted on the flexural behaviour of back to back built-up LSBs showed that the detrimental effects of lateral distortional buckling in single LSB members appear to remain with back to back built-up LSB members. The ultimate moment capacity of back to back LSB member is also affected by lateral distortional buckling failure. Therefore an investigation was conducted with an aim to develop suitable strength improvement methods, which are likely to mitigate lateral distortional buckling effects and hence improve the flexural strengths of back to back LSB members. This paper presents the details of this investigation, the results and recommendations for the most suitable and cost-effective method, which significantly improves the moment capacities of back to back LSB members.
Resumo:
This paper presents the details of numerical studies on the shear strength of a recently devel-oped, cold-formed steel channel beam known as LiteSteel Beam (LSB) with web openings. The LSB sections are commonly used as floor joists and bearers in residential, industrial and commercial buildings. In these ap-plications they often include web openings for the purpose of locating services. This has raised concerns over the shear capacity of LSB floor joists and bearers. Therefore experimental and numerical studies were under-taken to investigate the shear behavior and strength of LSBs with web openings. In this research, finite ele-ment models of LSBs with web openings in shear were developed to simulate the shear behavior of LSBs. It was found that currently available design equations are conservative or unconservative for the shear design of LSBs with web openings. Improved design equations have been proposed for the shear capacity of LSBs with web openings based on both experimental and numerical study results.
Resumo:
This paper presents the details of a parametric study based on finite element analyses (FEA) and development of design rules for the shear strength of a recently developed, cold-formed steel channel beam known as LiteSteel Beam (LSB). The LSB sections are commonly used as flexural members in residential, in-dustrial and commercial buildings. In order to ensure safe and efficient designs of LSBs, many research stu-dies have been undertaken on the flexural behaviour of LSBs. However, no research has been undertaken on the shear behaviour of LSBs. Therefore a detailed investigation including both numerical and experimental studies was undertaken to investigate the shear behaviour of LSBs. Both the experimental and FEA parametric study results showed that the current design rules in cold-formed steel design codes are very conservative for the shear design of LSBs. New shear strength equations for LSBs were proposed based on the experimental and FEA parametric study results.
Resumo:
Mesoporous bioactive glass (MBG) is a new class of biomaterials with a well-ordered nanochannel structure, whose in vitro bioactivity is far superior than that of non-mesoporous bioactive glass (BG); the material's in vivo osteogenic properties are, however, yet to be assessed. Porous silk scaffolds have been used for bone tissue engineering, but this material's osteoconductivity is far from optimal. The aims of this study were to incorporate MBG into silk scaffolds in order to improve their osteoconductivity and then to compare the effect of MBG and BG on the in vivo osteogenesis of silk scaffolds. MBG/silk and BG/silk scaffolds with a highly porous structure were prepared by a freeze-drying method. The mechanical strength, in vitro apatite mineralization, silicon ion release and pH stability of the composite scaffolds were assessed. The scaffolds were implanted into calvarial defects in SCID mice and the degree of in vivo osteogenesis was evaluated by microcomputed tomography (μCT), hematoxylin and eosin (H&E) and immunohistochemistry (type I collagen) analyses. The results showed that MBG/silk scaffolds have better physiochemical properties (mechanical strength, in vitro apatite mineralization, Si ion release and pH stability) compared to BG/silk scaffolds. MBG and BG both improved the in vivo osteogenesis of silk scaffolds. μCT and H&E analyses showed that MBG/silk scaffolds induced a slightly higher rate of new bone formation in the defects than did BG/silk scaffolds and immunohistochemical analysis showed greater synthesis of type I collagen in MBG/silk scaffolds compared to BG/silk scaffolds.
Resumo:
New-generation biomaterials for bone regenerations should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, has been used for the study of bone regeneration due to its excellent bioactivity, degradation and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due to its/their inherit brittleness and low strength. In this brief communication, we reported a new facile method to prepare hierarchical and multifunctional MBG scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability for bone regeneration application by a modified 3D-printing technique using polyvinylalcohol (PVA), as a binder. The method provides a new way to solve the commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, high brittleness and the requirement for the second sintering at high temperature. The obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have highly controllable pore architecture, excellent apatite-mineralization ability and sustained drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an excellent candidate for bone regeneration.
Resumo:
This article reports on a project to embed information literacy skills development in a first-year undergraduate business course at an Australian university. In accordance with prior research suggesting that first-year students are over-confident about their skills, the project used an optional online quiz to allow students to pre-test their information literacy skills. The students' lower than expected results subsequently encouraged greater skill development. However, not all students elected to undertake the first quiz. A final assessable information literacy quiz increased the levels of student engagement, suggesting that skill development activities need to be made assessable. We found that undertaking the information literacy quizzes resulted in a statistically significant improvement in students' information literacy skills from the pre-test to the post-test. This research therefore extends previous research by providing an effective means of delivering information literacy skill development to large cohorts of first-year students.