965 resultados para well-structured transition systems
Resumo:
Computer simulation of dynamical systems involves a phase space which is the finite set of machine arithmetic. Rounding state values of the continuous system to this grid yields a spatially discrete dynamical system, often with different dynamical behaviour. Discretization of an invertible smooth system gives a system with set-valued negative semitrajectories. As the grid is refined, asymptotic behaviour of the semitrajectories follows probabilistic laws which correspond to a set-valued Markov chain, whose transition probabilities can be explicitly calculated. The results are illustrated for two-dimensional dynamical systems obtained by discretization of fractional linear transformations of the unit disc in the complex plane.
Resumo:
This paper deals with atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in photonic band gap materials. The case of high Q cavities has been treated elsewhere using Fano diagonalization based on a quasimode approach, showing that the cavity quasimodes are responsible for pseudomodes introduced to treat non-Markovian behaviour. The paper considers a simple model of a photonic band gap case, where the spatially dependent permittivity consists of a constant term plus a small spatially periodic term that leads to a narrow band gap in the spectrum of mode frequencies. Most treatments of photonic band gap materials are based on the true modes, obtained numerically by solving the Helmholtz equation for the actual spatially periodic permittivity. Here the field modes are first treated in terms of a simpler quasimode approach, in which the quasimodes are plane waves associated with the constant permittivity term. Couplings between the quasimodes occur owing to the small periodic term in the permittivity, with selection rules for the coupled modes being related to the reciprocal lattice vectors. This produces a field Hamiltonian in quasimode form. A matrix diagonalization method may be applied to relate true mode annihilation operators to those for quasimodes. The atomic transitions are coupled to all the quasimodes, and the true mode atom-EM field coupling constants (one-photon Rabi frequencies) are related to those for the quasimodes and also expressions are obtained for the true mode density. The results for the one-photon Rabi frequencies differ from those assumed in other work. Expressions for atomic decay rates are obtained using the Fermi Golden rule, although these are valid only well away from the band gaps.
Resumo:
We develop a systematic theory of quantum fluctuations in the driven optical parametric oscillator, including the region near threshold. This allows us to treat the limits imposed by nonlinearities to quantum squeezing and noise reduction in this nonequilibrium quantum phase transition. In particular, we compute the squeezing spectrum near threshold and calculate the optimum value. We find that the optimal noise reduction occurs at different driving fields, depending on the ratio of damping rates. The largest spectral noise reductions are predicted to occur with a very high-Q second-harmonic cavity. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory.
Resumo:
The development of the new TOGA (titration and off-gas analysis) sensor for the detailed study of biological processes in wastewater treatment systems is outlined. The main innovation of the sensor is the amalgamation of titrimetric and off-gas measurement techniques. The resulting measured signals are: hydrogen ion production rate (HPR), oxygen transfer rate (OTR), nitrogen transfer rate (NTR), and carbon dioxide transfer rate (CTR). While OTR and NTR are applicable to aerobic and anoxic conditions, respectively, HPR and CTR are useful signals under all of the conditions found in biological wastewater treatment systems, namely, aerobic, anoxic and anaerobic. The sensor is therefore a powerful tool for studying the key biological processes under all these conditions. A major benefit from the integration of the titrimetric and off-gas analysis methods is that the acid/base buffering systems, in particular the bicarbonate system, are properly accounted for. Experimental data resulting from the TOGA sensor in aerobic, anoxic, and anaerobic conditions demonstrates the strength of the new sensor. In the aerobic environment, carbon oxidation (using acetate as an example carbon source) and nitrification are studied. Both the carbon and ammonia removal rates measured by the sensor compare very well with those obtained from off-line chemical analysis. Further, the aerobic acetate removal process is examined at a fundamental level using the metabolic pathway and stoichiometry established in the literature, whereby the rate of formation of storage products is identified. Under anoxic conditions, the denitrification process is monitored and, again, the measured rate of nitrogen gas transfer (NTR) matches well with the removal of the oxidised nitrogen compounds (measured chemically). In the anaerobic environment, the enhanced biological phosphorus process was investigated. In this case, the measured sensor signals (HPR and CTR) resulting from acetate uptake were used to determine the ratio of the rates of carbon dioxide production by competing groups of microorganisms, which consequently is a measure of the activity of these organisms. The sensor involves the use of expensive equipment such as a mass spectrometer and requires special gases to operate, thus incurring significant capital and operational costs. This makes the sensor more an advanced laboratory tool than an on-line sensor. (C) 2003 Wiley Periodicals, Inc.
Resumo:
We are witnessing an enormous growth in biological nitrogen removal from wastewater. It presents specific challenges beyond traditional COD (carbon) removal. A possibility for optimised process design is the use of biomass-supporting media. In this paper, attached growth processes (AGP) are evaluated using dynamic simulations. The advantages of these systems that were qualitatively described elsewhere, are validated quantitatively based on a simulation benchmark for activated sludge treatment systems. This simulation benchmark is extended with a biofilm model that allows for fast and accurate simulation of the conversion of different substrates in a biofilm. The economic feasibility of this system is evaluated using the data generated with the benchmark simulations. Capital savings due to volume reduction and reduced sludge production are weighed out against increased aeration costs. In this evaluation, effluent quality is integrated as well.
Resumo:
A well-known, and unresolved, conjecture states that every partial Steiner triple system of order u can be embedded in a Steiner triple system of order v for all v equivalent to 1 or 3 (mod 6), v greater than or equal to 2u + 1. However, some partial Steiner triple systems of order u can be embedded in Steiner triple systems of order v < 2u + 1. A more general conjecture that considers these small embeddings is presented and verified for some cases. (C) 2002 Wiley Periodicals, Inc.
Resumo:
High-throughput screening (HTS) using high-density microplates is the primary method for the discovery of novel lead candidate molecules. However, new strategies that eschew 2D microplate technology, including technologies that enable mass screening of targets against large combinatorial libraries, have the potential to greatly increase throughput and decrease unit cost. This review presents an overview of state-of-the-art microplate-based HTS technology and includes a discussion of emerging miniaturized systems for HTS. We focus on new methods of encoding combinatorial libraries that promise throughputs of as many as 100 000 compounds per second.
Resumo:
This review considers the current literature on the macro-mineral nutrition of the soon-to-calve, or transition, dairy cow. Calcium is the main focus, since milk fever (clinical hypocalcaemia) appears to be the most common mineral-related problem faced by the transition cow Australia-wide. The importance of minimising calcium intake and optimising the balance of the key dietary electrolytes, sodium, potassium, sulfate, and chloride, in the weeks before calving is highlighted. Excess dietary potassium can, in some situations, induce milk fever, perhaps even more effectively than excess calcium. Excess sodium remains under suspicion. In contrast, excess dietary chlorine and, to a lesser extent, sulfur can improve the ability of the cow to maintain calcium homeostasis. Diets that promote either a hypomagnesaemia or hyperphosphataemia have also the potential to precipitate milk fever at calving. Current prevention strategies focus on the use of forages with moderate to low levels of calcium, potassium, and sodium, and also rely on or utilise addition of chloride and sulfate in the form of 'anionic' feeds. Anionic salts are one example of an anionic feed. However, legitimate questions remain as to the effectiveness of anionic salts in pasture-feeding systems. The causes and prevention of milk fever are considered from the perspective of the variety of Australian feedbases. Impediments to the use of anionic feeds in Australia feeding systems are outlined. The potential for improving maternal reserves of calcium around calving to reduce the risk of milk fever is also discussed.
Resumo:
Models of plant architecture allow us to explore how genotype environment interactions effect the development of plant phenotypes. Such models generate masses of data organised in complex hierarchies. This paper presents a generic system for creating and automatically populating a relational database from data generated by the widely used L-system approach to modelling plant morphogenesis. Techniques from compiler technology are applied to generate attributes (new fields) in the database, to simplify query development for the recursively-structured branching relationship. Use of biological terminology in an interactive query builder contributes towards making the system biologist-friendly. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
This article analyzes physical symptoms experienced by mid-age Australian women in different stages of the menopause transition. A total of 8,623 women, aged 45 to 50 years in 1996, who participated the mid-age cohort of the Australian Longitudinal Study on Women's Health, completed Survey I in 1996 and Survey 2 in 1998. Women were assigned to I of 6 menopause groups according to their menopausal status at Surveys 1 and 2, and compared on symptoms experienced at Surveys I and 2, adjusted for lifestyle, behavioral and demographic factors. At Survey 1, the most commonly reported symptoms were headaches, back pain, stiff joints, tiredness, and difficulty sleeping. Perimenopausal women were more likely than premenopausal or postmenopausal women to report these symptoms. Hot flushes and night sweats were more common among postmenopausal women. Compared with those who remained premenopausal, women who were in the early stages of menopause or perimenopausal were more likely to report tiredness, stiff joints, difficulty sleeping, and hot flushes at Survey 2. Women who remained perimenopausal were also more likely to report back pain and leaking urine. Compared with premenopausal women, odds ratios for night sweats increased for women in consecutive stages of the menopause transition and remained high in the postmenopausal women.
Resumo:
Petrogenetic models for the origin of lamproites are evaluated using new major element, trace element, and Sr, Nd, and Pb isotope data for Holocene lamproites from the Gaussberg volcano in the East Antarctic Shield. Gaussberg lamproites exhibit very unusual Pb isotope compositions (Pb-206/Pb-204 = 17.44-17.55 and Pb-207/Pb-204 = 15.56-15.63), which in common Pb isotope space plot above mantle evolution lines and to the left of the meteorite isochron. Combined with very unradiogenic Nd, such compositions are shown to be inconsistent with an origin by melting of sub-continental lithospheric mantle. Instead, a model is proposed in which late Archaean continent-derived sediment is subducted as K-hollandite and other ultra-high-pressure phases and sequestered in the Transition Zone (or lower mantle) where it is effectively isolated for 2-3 Gyr. The high Pb-207/Pb-204 ratio is thus inherited from ancient continent-derived sediment, and the relatively low Pb-206/Pb-204 ratio is the result of a single stage of U/Pb fractionation by subduction-related U loss during slab dehydration. Sr and Nd isotope ratios, and trace element characteristics (e.g. Nb/Ta ratios) are consistent with sediment subduction and dehydration-related fractionation. Similar models that use variable time of isolation of subducted sediment can be derived for all lamproites. Our interpretation of lamproite sources has important implications for ocean island basalt petrogenesis as well as the preservation of geochemically anomalous reservoirs in the mantle.
Resumo:
We propose a new method to investigate the thermal properties of QCD with a small quark chemical potential mu. Derivatives of quark and gluonic observables with respect to mu are computed at mu=0 for two flavors of p4 improved staggered fermions with ma=0.1,0.2 on a 16(3)x4 lattice, and used to calculate the leading order Taylor expansion in mu of the location of the pseudocritical point about mu=0. This expansion should be well behaved for the small values of mu(q)/T(c)similar to0.1 relevant for BNL RHIC phenomenology, and predicts a critical curve T-c(mu) in reasonable agreement with estimates obtained using exact reweighting. In addition, we contrast the case of isoscalar and isovector chemical potentials, quantify the effect of munot equal0 on the equation of state, and comment on the complex phase of the fermion determinant in QCD with munot equal0.
Resumo:
A thermodynamic approach is developed in this paper to describe the behavior of a subcritical fluid in the neighborhood of vapor-liquid interface and close to a graphite surface. The fluid is modeled as a system of parallel molecular layers. The Helmholtz free energy of the fluid is expressed as the sum of the intrinsic Helmholtz free energies of separate layers and the potential energy of their mutual interactions calculated by the 10-4 potential. This Helmholtz free energy is described by an equation of state (such as the Bender or Peng-Robinson equation), which allows us a convenient means to obtain the intrinsic Helmholtz free energy of each molecular layer as a function of its two-dimensional density. All molecular layers of the bulk fluid are in mechanical equilibrium corresponding to the minimum of the total potential energy. In the case of adsorption the external potential exerted by the graphite layers is added to the free energy. The state of the interface zone between the liquid and the vapor phases or the state of the adsorbed phase is determined by the minimum of the grand potential. In the case of phase equilibrium the approach leads to the distribution of density and pressure over the transition zone. The interrelation between the collision diameter and the potential well depth was determined by the surface tension. It was shown that the distance between neighboring molecular layers substantially changes in the vapor-liquid transition zone and in the adsorbed phase with loading. The approach is considered in this paper for the case of adsorption of argon and nitrogen on carbon black. In both cases an excellent agreement with the experimental data was achieved without additional assumptions and fitting parameters, except for the fluid-solid potential well depth. The approach has far-reaching consequences and can be readily extended to the model of adsorption in slit pores of carbonaceous materials and to the analysis of multicomponent adsorption systems. (C) 2002 Elsevier Science (USA).
Resumo:
Concerns of reduced productivity and land degradation in the Mitchell grasslands of central western Queensland were addressed through a range monitoring program to interpret condition and trend. Botanical and eclaphic parameters were recorded along piosphere and grazing gradients, and across fenceline impact areas, to maximise changes resulting from grazing. The Degradation Gradient Method was used in conjunction with State and Transition Models to develop models of rangeland dynamics and condition. States were found to be ordered along a degradation gradient, indicator species developed according to rainfall trends and transitions determined from field data and available literature. Astrebla spp. abundance declined with declining range condition and increasing grazing pressure, while annual grasses and forbs increased in dominance under poor range condition. Soil erosion increased and litter decreased with decreasing range condition. An approach to quantitatively define states within a variable rainfall environment based upon a time-series ordination analysis is described. The derived model could provide the interpretive framework necessary to integrate on-ground monitoring, remote sensing and geographic information systems to trace states and transitions at the paddock scale. However, further work is needed to determine the full catalogue of states and transitions and to refine the model for application at the paddock scale.
Resumo:
Pulp lifters, also known, as pan lifters are an integral part of the majority of autogenous (AG), semi-autogenous (SAG) and grate discharge ball mills. The performance of the pulp lifters in conjunction with grate design determines the ultimate flow capacity of these mills. Although the function of the pulp lifters is simply to transport the slurry passed through the discharge grate into the discharge trunnion, their performance depends on their design as well as that of the grate and operating conditions such as mill speed and charge level. However, little or no work has been reported on the performance of grate-pulp lifter assemblies and in particular the influence of pulp lifter design on slurry transport. Ideally, the discharge rate through a grate-pulp lifter assembly should be equal to the discharge rate through at a given mill hold-up. However, the results obtained have shown that conventional pulp lifter designs cause considerable restrictions to flow resulting in reduced flow capacity. In this second of a two-part series of papers the performance of conventional pulp lifters (radial and spiral designs) is described and is based on extensive test work carried out in a I m diameter pilot SAG mill. (C) 2003 Elsevier Science Ltd. All rights reserved.