908 resultados para unknown-input estimation
Resumo:
A key aspect of industrialization is theadoption of increasing-returns-to-scale, industrial,technologies. Two other, well-documented aspects arethat industrial technologies are adopted throughoutintermediate-input chains and that they use intermediateinputs intensively relative to the technologies theyreplace. These features of industrial technologiescombined imply that countries with access to similartechnologies may have very different levels ofindustrialization and income, even if the degree ofincreasing returns to scale at the firm level is relativelysmall. Furthermore, a small improvement in theproductivity of industrial technologies can trigger full-scaleindustrialization and a large increase in income.
Resumo:
This paper proposes to estimate the covariance matrix of stock returnsby an optimally weighted average of two existing estimators: the samplecovariance matrix and single-index covariance matrix. This method isgenerally known as shrinkage, and it is standard in decision theory andin empirical Bayesian statistics. Our shrinkage estimator can be seenas a way to account for extra-market covariance without having to specifyan arbitrary multi-factor structure. For NYSE and AMEX stock returns from1972 to 1995, it can be used to select portfolios with significantly lowerout-of-sample variance than a set of existing estimators, includingmulti-factor models.
Resumo:
In this article we propose using small area estimators to improve the estimatesof both the small and large area parameters. When the objective is to estimateparameters at both levels accurately, optimality is achieved by a mixed sampledesign of fixed and proportional allocations. In the mixed sample design, oncea sample size has been determined, one fraction of it is distributedproportionally among the different small areas while the rest is evenlydistributed among them. We use Monte Carlo simulations to assess theperformance of the direct estimator and two composite covariant-freesmall area estimators, for different sample sizes and different sampledistributions. Performance is measured in terms of Mean Squared Errors(MSE) of both small and large area parameters. It is found that the adoptionof small area composite estimators open the possibility of 1) reducingsample size when precision is given, or 2) improving precision for a givensample size.
Resumo:
Most methods for small-area estimation are based on composite estimators derived from design- or model-based methods. A composite estimator is a linear combination of a direct and an indirect estimator with weights that usually depend on unknown parameters which need to be estimated. Although model-based small-area estimators are usually based on random-effects models, the assumption of fixed effects is at face value more appropriate.Model-based estimators are justified by the assumption of random (interchangeable) area effects; in practice, however, areas are not interchangeable. In the present paper we empirically assess the quality of several small-area estimators in the setting in which the area effects are treated as fixed. We consider two settings: one that draws samples from a theoretical population, and another that draws samples from an empirical population of a labor force register maintained by the National Institute of Social Security (NISS) of Catalonia. We distinguish two types of composite estimators: a) those that use weights that involve area specific estimates of bias and variance; and, b) those that use weights that involve a common variance and a common squared bias estimate for all the areas. We assess their precision and discuss alternatives to optimizing composite estimation in applications.
Resumo:
This paper establishes a general framework for metric scaling of any distance measure between individuals based on a rectangular individuals-by-variables data matrix. The method allows visualization of both individuals and variables as well as preserving all the good properties of principal axis methods such as principal components and correspondence analysis, based on the singular-value decomposition, including the decomposition of variance into components along principal axes which provide the numerical diagnostics known as contributions. The idea is inspired from the chi-square distance in correspondence analysis which weights each coordinate by an amount calculated from the margins of the data table. In weighted metric multidimensional scaling (WMDS) we allow these weights to be unknown parameters which are estimated from the data to maximize the fit to the original distances. Once this extra weight-estimation step is accomplished, the procedure follows the classical path in decomposing a matrix and displaying its rows and columns in biplots.
Resumo:
A class of composite estimators of small area quantities that exploit spatial (distancerelated)similarity is derived. It is based on a distribution-free model for the areas, but theestimators are aimed to have optimal design-based properties. Composition is applied alsoto estimate some of the global parameters on which the small area estimators depend.It is shown that the commonly adopted assumption of random effects is not necessaryfor exploiting the similarity of the districts (borrowing strength across the districts). Themethods are applied in the estimation of the mean household sizes and the proportions ofsingle-member households in the counties (comarcas) of Catalonia. The simplest version ofthe estimators is more efficient than the established alternatives, even though the extentof spatial similarity is quite modest.
Resumo:
We set up a dynamic model of firm investment in which liquidity constraintsenter explicity into the firm's maximization problem. The optimal policyrules are incorporated into a maximum likelihood procedure which estimatesthe structural parameters of the model. Investment is positively related tothe firm's internal financial position when the firm is relatively poor. This relationship disappears for wealthy firms, which can reach theirdesired level of investment. Borrowing is an increasing function of financial position for poor firms. This relationship is reversed as a firm's financial position improves, and large firms hold little debt.Liquidity constrained firms may be unused credits lines and the capacity toinvest further if they desire. However the fear that liquidity constraintswill become binding in the future induces them to invest only when internalresources increase.We estimate the structural parameters of the model and use them to quantifythe importance of liquidity constraints on firms' investment. We find thatliquidity constraints matter significantly for the investment decisions of firms. If firms can finance investment by issuing fresh equity, rather than with internal funds or debt, average capital stock is almost 35% higher overa period of 20 years. Transitory shocks to internal funds have a sustained effect on the capital stock. This effect lasts for several periods and ismore persistent for small firms than for large firms. A 10% negative shock to firm fundamentals reduces the capital stock of firms which face liquidityconstraints by almost 8% over a period as opposed to only 3.5% for firms which do not face these constraints.
Resumo:
We propose a method to estimate time invariant cyclical DSGE models using the informationprovided by a variety of filters. We treat data filtered with alternative procedures as contaminated proxies of the relevant model-based quantities and estimate structural and non-structuralparameters jointly using a signal extraction approach. We employ simulated data to illustratethe properties of the procedure and compare our conclusions with those obtained when just onefilter is used. We revisit the role of money in the transmission of monetary business cycles.
Resumo:
A new parametric minimum distance time-domain estimator for ARFIMA processes is introduced in this paper. The proposed estimator minimizes the sum of squared correlations of residuals obtained after filtering a series through ARFIMA parameters. The estimator iseasy to compute and is consistent and asymptotically normally distributed for fractionallyintegrated (FI) processes with an integration order d strictly greater than -0.75. Therefore, it can be applied to both stationary and non-stationary processes. Deterministic components are also allowed in the DGP. Furthermore, as a by-product, the estimation procedure provides an immediate check on the adequacy of the specified model. This is so because the criterion function, when evaluated at the estimated values, coincides with the Box-Pierce goodness of fit statistic. Empirical applications and Monte-Carlo simulations supporting the analytical results and showing the good performance of the estimator in finite samples are also provided.
Resumo:
A national survey designed for estimating a specific population quantity is sometimes used for estimation of this quantity also for a small area, such as a province. Budget constraints do not allow a greater sample size for the small area, and so other means of improving estimation have to be devised. We investigate such methods and assess them by a Monte Carlo study. We explore how a complementary survey can be exploited in small area estimation. We use the context of the Spanish Labour Force Survey (EPA) and the Barometer in Spain for our study.
Resumo:
This paper demonstrates that, unlike what the conventional wisdom says, measurement error biases in panel data estimation of convergence using OLS with fixed effects are huge, not trivial. It does so by way of the "skipping estimation"': taking data from every m years of the sample (where m is an integer greater than or equal to 2), as opposed to every single year. It is shown that the estimated speed of convergence from the OLS with fixed effects is biased upwards by as much as 7 to 15%.