951 resultados para ultra-narrowband (UNB)
Resumo:
Templated sol-gel encapsulation of surfactant-stabilised micelles containing metal precursor(s) with ultra-thin porous silica coating allows solvent extraction of organic based stabiliser from the composites in colloidal state hence a new method of preparing supported alloy catalysts using the inorganic silica-stabilised nano-sized, homogenously mixed, silver - platinum (Ag-Pt) colloidal particles is reported.
Resumo:
The temperature-time profiles of 22 Australian industrial ultra-high-temperature (UHT) plants and 3 pilot plants, using both indirect and direct heating, were surveyed. From these data, the operating parameters of each plant, the chemical index C*, the bacteriological index B* and the predicted changes in the levels of beta-lactoglobulin, alpha-lactalbumin, lactulose, furosine and browning were determined using a simulation program based on published formulae and reaction kinetics data. There was a wide spread of heating conditions used, some of which resulted in a large margin of bacteriological safety and high chemical indices. However, no conditions were severe enough to cause browning during processing. The data showed a clear distinction between the indirect and direct heating plants. They also indicated that degree of denaturation of alpha-lactalbumin varied over a wide range and may be a useful discriminatory index of heat treatment. Application of the program to pilot plants illustrated its value in determining processing conditions in these plants to simulate the conditions in industrial UHT plants. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The flavor characteristics of pennywort juices with added sugar treated by ultra-high pressure, pasteurization, and sterilization were investigated using solid phase microextraction combined with gas chromatography-mass spectrometry. It was found that sesquiterpene hydrocarbons comprised the major class of volatile components present and the juices had a characteristic aroma due to the presence of volatiles including beta-caryophyllene and humulene and alpha-copaene. In comparison with heated juices, HPP-treated samples could retain more volatile compounds such as linalool and geraniol similar to those present in fresh juice, whereas some volatiles such as alpha-terpinene and ketone class were apparently formed by thermal treatment. All processing operations produced juice that was not significantly different in the concentration of total volatiles. Practical Application: Pennywort juice is considered a nutraceutical drink for health benefits. Therefore, to preserve all aroma and active components in this juice, a nonthermal process such as ultra-high pressure should be a more appropriate technique for retention of its nutritive values than pasteurization and sterilization.
Resumo:
This paper discusses the design, implementation and synthesis of an FFT module that has been specifically optimized for use in the OFDM based Multiband UWB system, although the work is generally applicable to many other OFDM based receiver systems. Previous work has detailed the requirements for the receiver FFT module within the Multiband UWB ODFM based system and this paper draws on those requirements coupled with modern digital architecture principles and low power design criteria to converge on our optimized solution. The FFT design obtained in this paper is also applicable for implementation of the transmitter IFFT module therefore only needing one FFT module for half-duplex operation. The results from this paper enable the baseband designers of the 200Mbit/sec variant of Multiband UWB systems (and indeed other OFDM based receivers) using System-on-Chip (SoC), FPGA and ASIC technology to create cost effective and low power solutions biased toward the competitive consumer electronics market.
Resumo:
This paper discusses the architectural design, implementation and associated simulated peformance results of a possible receiver solution fir a multiband Ultra-Wideband (UWB) receiver. The paper concentrates on the tradeoff between the soft-bit width and numerical precision requirements for the receiver versus performance. The required numerical precision results obtained in this paper can be used by baseband designers of cost effective UWB systems using Systein-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).
A low clock frequency FFT core implementation for multiband full-rate ultra-wideband (UWB) receivers
Resumo:
This paper discusses the design, implementation and synthesis of an FFT module that has been specifically optimized for use in the OFDM based Multiband UWB system, although the work is generally applicable to many other OFDM based receiver systems. Previous work has detailed the requirements for the receiver FFT module within the Multiband UWB ODFM based system and this paper draws on those requirements coupled with modern digital architecture principles and low power design criteria to converge on our optimized solution particularly aimed at a low-clock rate implementation. The FFT design obtained in this paper is also applicable for implementation of the transmitter IFFT module therefore only needing one FFT module in the device for half-duplex operation. The results from this paper enable the baseband designers of the 200Mbit/sec variant of Multiband UWB systems (and indeed other OFDM based receivers) using System-on-Chip (SoC), FPGA and ASIC technology to create cost effective and low power consumer electronics product solutions biased toward the very competitive market.
Resumo:
This paper discusses the requirements on the numerical precision for a practical Multiband Ultra-Wideband (UWB) consumer electronic solution. To this end we first present the possibilities that UWB has to offer to the consumer electronics market and the possible range of devices. We then show the performance of a model of the UWB baseband system implemented using floating point precision. Then, by simulation we find the minimal numerical precision required to maintain floating-point performance for each of the specific data types and signals present in the UWB baseband. Finally, we present a full description of the numerical requirements for both the transmit and receive components of the UWB baseband. The numerical precision results obtained in this paper can then be used by baseband designers to implement cost effective UWB systems using System-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).
Resumo:
This paper reports on the design and manufacture of an ultra-wide (5-30µm) infrared edge filter for use in FTIR studies of the low frequency vibrational modes of metallo-proteins. We present details of the spectral design and manufacture of such a filter which meets the demanding bandwidth and transparency requirements of the application, and spectra that present the new data possible with such a filter. A design model of the filter and the materials used in its construction has been developed capable of accurately predicting spectral performance at both 300K and at the reduced operating temperature at 200K. This design model is based on the optical and semiconductor properties of a multilayer filter containing PbTe (IV-VI) layer material in combination with the dielectric dispersion of ZnSe (II-VI) deposited on a CdTe (II-VI) substrate together with the use of BaF2 (II-VII) as an antireflection layer. Comparisons between the computed spectral performance of the model and spectral measurements from manufactured coatings over a wavelength range of 4-30µm and temperature range 300-200K are presented. Finally we present the results of the FTIR measurements of Photosystem II showing the improvement in signal to noise ratio of the measurement due to using the filter, together with a light induced FTIR difference spectrum of Photosystem II.
Resumo:
Our latest research indicates that narrow bandpass filters of ~0.6% bandwidth (or any larger chosen width) and with good performance ar low temperature and in tilted and focused illumination can be realized by using multicavities and multimaterials.
Resumo:
A method of designing multi-cavity narrowband filters is presented, which is based on a Tschebyshev optical prototype bandpass filter, the equivalent index concept and the variation of phases through the filter structure. Some design results are given.
Resumo:
The development of a set of multi-channel dichroics which includes a 6 channel dichroic operating over the wavelength region from 0.3 to 52µm is described. In order to achieve the optimum performance, the optical constants of PbTe, Ge and CdTe coatings in the strongly absorptive region have been determined by use of a new iterative method using normal incidence reflectance measurement of the multilayer together with initial values of energy gap Eg and infinite refractive index n for the semiconductor model. The design and manufacture of the dichroics is discussed and the final results are presented.
Resumo:
Ultra High Temperature #1, initiated by Rebecca Bibby forms the first in an ongoing project which explores the realms of collaboration, performance, writing and publication as artistic vehicle of production, dispersion and progression. With Bibby's text -that re-fictions the futuristic projections of technosexuality in Metropolis (1927)- at its core was launched, printed, compiled and distributed in a live performance by POLLYFIBRE at Eastside Projects in Birmingham. The limited edition printed publication was designed by An Endless Supply whose Risograph stencil printer was used as an instrument in the performed production of the text. As a crude avatar of Rebecca Bibby’s practice, Aikon-II, a mechanically programmed signature machine automatically signed each copy of the text during the performance. POLLYFIBRE's ‘flat-pack’ costumes were on display throughout the duration of the exhibition. POLLYFIBRE is a performance project created by Christine Ellison.