547 resultados para trigeminal ganglion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work examines the role of cAMP in the induction of the type of long-term morphological changes that have been shown to be correlated with long-term sensitization in Aplysia.^ To examine this issue, cAMP was injected into individual tail sensory neurons in the pleural ganglion to mimic, at the single cell level, the effects of behavioral training. After a 22 hr incubation period, the same cells were filled with horseradish peroxidase and 2 hours later the tissue was fixed and processed. Morphological analysis revealed that cAMP induced an increase in two morphological features of the neurons, varicosities and branch points. These structural alterations, which are similar to those seen in siphon sensory neurons of the abdominal ganglion following long-term sensitization training of the siphon-gill withdrawal reflex, could subserve the altered behavioral response of the animal. These results expose another role played by cAMP in the induction of learning, the initiation of a structural substrate, which, in concert with other correlates, underlies learning.^ cAMP was injected into sensory neurons in the presence of the reversible protein synthesis inhibitor, anisomycin. The presence of anisomycin during and immediately following the nucleotide injection completely blocked the structural remodeling. These results indicate that the induction of morphological changes by cAMP is a process dependent on protein synthesis.^ To further examine the temporal requirement for protein synthesis in the induction of these changes, the time of anisomycin exposure was varied. The results indicate that the cellular processes triggered by cAMP are sensitive to the inhibition of protein synthesis for at least 7 hours after the nucleotide injection. This is a longer period of sensitivity than that for the induction of another correlate of long-term sensitization, facilitation of the sensory to motor neuron synaptic connection. Thus, these findings demonstrate that the period of sensitivity to protein synthesis inhibition is not identical for all correlates of learning. In addition, since the induction of the morphological changes can be blocked by anisomycin pulses administered at different times during and following the cAMP injection, this suggests that cAMP is triggering a cascade of protein synthesis, with successive rounds of synthesis being dependent on successful completion of preceding rounds. Inhibition at any time during this cascade can block the entire process and so prevent the development of the structural changes.^ The extent to which cAMP can mimic the structural remodeling induced by long-term training was also examined. Animals were subjected to unilateral sensitization training and the morphology of the sensory neurons was examined twenty-four hours later. Both cAMP injection and long-term training produced a twofold increase in varicosities and approximately a fifty percent increase in the number of branch points in the sensory neuron arborization within the pleural ganglion. (Abstract shortened by UMI.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In various species, peripheral injury produces long-lasting sensitization of central and peripheral neurons representing the affected area. In Aplysia, memory-like traces (lasting days or weeks) of noxious peripheral stimulation include enhancement of central synaptic transmission and enhanced excitability of the central soma and peripheral branches of nociceptive sensory neurons. An important role for the cAMP-PKA-CREB pathway in consolidating long-term memory and inducing transcription-dependent synaptic potentiation has also been indicated by studies in rodents and Drosophila. ^ Much less attention has been paid to the cGMP-PKG pathway for transcription-dependent plasticity. Nevertheless, the cGMP-PKG pathway has been implicated in activity-dependent neural alterations lasting hours, and may trigger some forms of persistent pain. Recent evidence indicates PKG can regulate gene expression in the brain and several properties make it an attractive candidate for inducing long-term memories. ^ This dissertation reports that brief, noxious stimulation of a behaving, semi-intact preparation from mollusc, Aplysia californica, produces transcription-dependent, long-term hyperexcitability (LTH) of nociceptive sensory neurons that requires a nitric oxide (NO)-cGMP-protein kinase G (PKG) pathway and which lasts for at least 24 hours. Intracellular injection of cGMP is sufficient to induce LTH. Similarly, body wall injury induces LTH which can be blocked with specific inhibitors of the NO-cGMP-PKG pathway such as L-NMMA, ODQ, Rp-8-cGMPS, PKI-G and KT5823 by isolated perfusion of pleural ganglion sensory cells in or directly by intracellular injection. In contrast, specific inhibitors of the cAMP-PKA pathway (Rp-8-cAMPS, PKI-A and H-89) failed to block injury-induced LTH. Interestingly, co-injection of the cAMP-responsive element (CRE) blocked the induction of both cAMP and injury-induced LTH, but not cGMP-induced LTH. Furthermore, co-injection of cAMP and cGMP with the Ca2+ buffer BAPTA in reduced Ca2+ seawater blocked cAMP-, but not cGMP-induced LTH. These findings demonstrate that the NO-cGMP-PKG pathway and at least one other pathway (perhaps mediated by Ca2+), but not the cAMP-PKA pathway, are critical for inducing LTH during transient, noxious stimulation.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As it is known, there are five types of neurons in the mammalian retinal layer allowing the detection of several important characteristics of the visual image impinging onto the visual system, namely, photoreceptors, horizontal cells, amacrine, bipolar and ganglion cells. And it is a well known fact too, that the amacrine neuron architecture allows a first detection for objects motion, being the most important retinal cell to this function. We have already studied and simulated the Dowling retina model and we have verified that many complex processes in visual detection is performed with the basis of the amacrine cell synaptic connections. This work will show how this structure may be employed for motion detection

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Axonal damage to adult peripheral neurons causes changes in neuronal gene expression. For example, axotomized sympathetic, sensory, and motor neurons begin to express galanin mRNA and protein, and recent evidence suggests that galanin plays a role in peripheral nerve regeneration. Previous studies in sympathetic and sensory neurons have established that galanin expression is triggered by two consequences of nerve transection: the induction of leukemia inhibitory factor (LIF) and the reduction in the availability of the target-derived factor, nerve growth factor. It is shown in the present study that no stimulation of galanin expression occurs following direct application of LIF to intact neurons in the superior cervical sympathetic ganglion. Injection of animals with an antiserum to nerve growth factor concomitant with the application of LIF, on the other hand, does stimulate galanin expression. The data suggest that the response of neurons to an injury factor, LIF, is affected by whether the neurons still receive trophic signals from their targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of intracellular signaling pathways can modulate the properties of voltage-gated ion channels. Some of them are well characterized. However, the diffusible second messenger mediating suppression of M current via G protein-coupled receptors has not been identified. In superior cervical ganglion neurons, we find that the signaling pathways underlying M current inhibition by B2 bradykinin and M1 muscarinic receptors respond very differently to inhibitors. The bradykinin pathway was suppressed by the phospholipase C inhibitor U-73122, by blocking the IP3 receptor with pentosan polysulfate or heparin, and by buffering intracellular calcium, and it was occluded by allowing IP3 to diffuse into the cytoplasm via a patch pipette. By contrast, the muscarinic pathway was not disrupted by any of these treatments. The addition of bradykinin was accompanied by a [Ca2+]i rise with a similar onset and time to peak as the inhibition of M current. The M current inhibition and the rise of [Ca2+]i were blocked by depletion of Ca2+ internal stores by thapsigargin. We conclude that bradykinin receptors inhibit M current of sympathetic neurons by activating phospholipase C and releasing Ca2+ from IP3-sensitive Ca2+ stores, whereas muscarinic receptors do not use the phospholipase C pathway to inhibit M current channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied GABAergic synaptic transmission in retinal ganglion cells and hippocampal pyramidal cells to determine, at a cellular level, what is the effect of the targeted disruption of the gene encoding the synthetic enzyme GAD65 on the synaptic release of γ-aminobutyric acid (GABA). Neither the size nor the frequency of GABA-mediated spontaneous inhibitory postsynaptic currents (IPSCs) were reduced in retina or hippocampus in GAD65−/− mice. However, the release of GABA during sustained synaptic activation was substantially reduced. In the retina both electrical- and K+-induced increases in IPSC frequency were depressed without a change in IPSC amplitude. In the hippocampus the transient increase in the probability of inhibitory transmitter release associated with posttetanic potentiation was absent in the GAD65−/− mice. These results indicate that during and immediately after sustained stimulation the increase in the probability of transmitter release is not maintained in GAD65−/− mice. Such a finding suggests a decrease in the size or refilling kinetics of the releasable pool of vesicles, and various mechanisms are discussed that could account for such a defect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of cortical plasticity during adulthood has been demonstrated using many experimental paradigms. Whether this phenomenon is generated exclusively by changes in intrinsic cortical circuitry, or whether it involves concomitant cortical and subcortical reorganization, remains controversial. Here, we addressed this issue by simultaneously recording the extracellular activity of up to 135 neurons in the primary somatosensory cortex, ventral posterior medial nucleus of the thalamus, and trigeminal brainstem complex of adult rats, before and after a reversible sensory deactivation was produced by subcutaneous injections of lidocaine. Following the onset of the deactivation, immediate and simultaneous sensory reorganization was observed at all levels of the somatosensory system. No statistical difference was observed when the overall spatial extent of the cortical (9.1 ± 1.2 whiskers, mean ± SE) and the thalamic (6.1 ± 1.6 whiskers) reorganization was compared. Likewise, no significant difference was found in the percentage of cortical (71.1 ± 5.2%) and thalamic (66.4 ± 10.7%) neurons exhibiting unmasked sensory responses. Although unmasked cortical responses occurred at significantly higher latencies (19.6 ± 0.3 ms, mean ± SE) than thalamic responses (13.1 ± 0.6 ms), variations in neuronal latency induced by the sensory deafferentation occurred as often in the thalamus as in the cortex. These data clearly demonstrate that peripheral sensory deafferentation triggers a system-wide reorganization, and strongly suggest that the spatiotemporal attributes of cortical plasticity are paralleled by subcortical reorganization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The temporally encoded information obtained by vibrissal touch could be decoded “passively,” involving only input-driven elements, or “actively,” utilizing intrinsically driven oscillators. A previous study suggested that the trigeminal somatosensory system of rats does not obey the bottom-up order of activation predicted by passive decoding. Thus, we have tested whether this system obeys the predictions of active decoding. We have studied cortical single units in the somatosensory cortices of anesthetized rats and guinea pigs and found that about a quarter of them exhibit clear spontaneous oscillations, many of them around whisking frequencies (≈10 Hz). The frequencies of these oscillations could be controlled locally by glutamate. These oscillations could be forced to track the frequency of induced rhythmic whisker movements at a stable, frequency-dependent, phase difference. During these stimulations, the response intensities of multiunits at the thalamic recipient layers of the cortex decreased, and their latencies increased, with increasing input frequency. These observations are consistent with thalamocortical loops implementing phase-locked loops, circuits that are most efficient in decoding temporally encoded information like that obtained by active vibrissal touch. According to this model, and consistent with our results, populations of thalamic “relay” neurons function as phase “comparators” that compare cortical timing expectations with the actual input timing and represent the difference by their population output rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Axonal guidance is key to the formation of neuronal circuitry. Semaphorin 3A (Sema 3A; previously known as semaphorin III, semaphorin D, and collapsin-1), a secreted subtype of the semaphorin family, is an important axonal guidance molecule in vitro and in vivo. The molecular mechanisms of the repellent activity of semaphorins are, however, poorly understood. We have now found that the secreted semaphorins contain a short sequence of high homology to hanatoxin, a tarantula K+ and Ca2+ ion channel blocker. Point mutations in the hanatoxin-like sequence of Sema 3A reduce its capacity to repel embryonic dorsal root ganglion axons. Sema 3A growth cone collapse activity is inhibited by hanatoxin, general Ca2+ channel blockers, a reduction in extracellular or intracellular Ca2+, and a calmodulin inhibitor, but not by K+ channel blockers. Our data support an important role for Ca2+ in mediating the Sema 3A response and suggest that Sema 3A may produce its effects by causing the opening of Ca2+ channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cocaine- and amphetamine-regulated transcript (CART) is widely expressed in the central nervous system. Recent studies have pointed to a role for CART-derived peptides in inhibiting feeding behavior. Although these actions have generally been attributed to hypothalamic CART, it remains to be determined whether additional CART pathways exist that link signals from the gastrointestinal tract to the central control of food intake. In the present study, we have investigated the presence of CART in the rat vagus nerve and nodose ganglion. In the viscerosensory nodose ganglion, half of the neuron profiles expressed CART and its predicted peptide, as determined by in situ hybridization and immunohistochemistry. CART expression was markedly attenuated after vagotomy, but no modulation was observed after food restriction or high-fat regimes. A large proportion of CART-labeled neuron profiles also expressed cholecystokinin A receptor mRNA. CART-peptide-like immunoreactivity was transported in the vagus nerve and found in a dense fiber plexus in the nucleus tractus solitarii. Studies on CART in the spinal somatosensory system revealed strong immunostaining of the dorsal horn but only a small number of stained cell bodies in dorsal root ganglia. The present results suggest that CART-derived peptides are present in vagal afferent neurons sensitive to cholecystokinin, suggesting that the role of these peptides in feeding may be explained partly by mediating postprandial satiety effects of cholecystokinin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muscarinic acetylcholine receptors are members of the G protein-coupled receptor superfamily expressed in neurons, cardiomyocytes, smooth muscle, and a variety of epithelia. Five subtypes of muscarinic acetylcholine receptors have been discovered by molecular cloning, but their pharmacological similarities and frequent colocalization make it difficult to assign functional roles for individual subtypes in specific neuronal responses. We have used gene targeting by homologous recombination in embryonic stem cells to produce mice lacking the m1 receptor. These mice show no obvious behavioral or histological defects, and the m2, m3, and m4 receptors continue to be expressed in brain with no evidence of compensatory induction. However, the robust suppression of the M-current potassium channel activity evoked by muscarinic agonists in sympathetic ganglion neurons is completely lost in m1 mutant mice. In addition, both homozygous and heterozygous mutant mice are highly resistant to the seizures produced by systemic administration of the muscarinic agonist pilocarpine. Thus, the m1 receptor subtype mediates M current modulation in sympathetic neurons and induction of seizure activity in the pilocarpine model of epilepsy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CB1, a cannabinoid receptor enriched in neuronal tissue, was found in high concentration in retinas of rhesus monkey, mouse, rat, chick, goldfish, and tiger salamander by using a subtype-specific polyclonal antibody. Immunolabeling was detected in the two synaptic layers of the retina, the inner and outer plexiform layers, of all six species examined. In the outer plexiform layer, CB1 was located in and/or on cone pedicles and rod spherules. Labeling was detected in some amacrine cells of all species and in the ganglion cells and ganglion cell axons of all species except fish. In addition, sparse labeling was found in the inner and/or outer segments of the photoreceptors of monkey, mouse, rat, and chick. Using GC/MS to detect possible endogenous cannabinoids, we found 3 nmol of 2-arachidonylglycerol per g of tissue, but no anandamide was detectable. Cannabinoid receptor agonists induced a dramatic reduction in the amplitude of voltage-gated L-type calcium channel currents in identified retinal bipolar cells. The presence and distribution of the CB1 receptor, the large amounts of 2-arachidonylglycerol found, and the effects of cannabinoids on calcium channel activity in bipolar cells suggest a substantive role for an endogenous cannabinoid signaling system in retinal physiology, and perhaps vision in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assessing the reliability of neuronal spike trains is fundamental to an understanding of the neural code. We measured the reproducibility of retinal responses to repeated visual stimuli. In both tiger salamander and rabbit, the retinal ganglion cells responded to random flicker with discrete, brief periods of firing. For any given cell, these firing events covered only a small fraction of the total stimulus time, often less than 5%. Firing events were very reproducible from trial to trial: the timing jitter of individual spikes was as low as 1 msec, and the standard deviation in spike count was often less than 0.5 spikes. Comparing the precision of spike timing to that of the spike count showed that the timing of a firing event conveyed several times more visual information than its spike count. This sparseness and precision were general characteristics of ganglion cell responses, maintained over the broad ensemble of stimulus waveforms produced by random flicker, and over a range of contrasts. Thus, the responses of retinal ganglion cells are not properly described by a firing probability that varies continuously with the stimulus. Instead, these neurons elicit discrete firing events that may be the fundamental coding symbols in retinal spike trains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT3) support the survival of subpopulations of primary sensory neurons with defined and distinct physiological characteristics. Only a few genes have been identified as being differentially expressed in these subpopulations, and not much is known about the nature of the molecules involved in the processing of sensory information in NGF-dependent nociceptive neurons or NT3-dependent proprioceptive neurons. We devised a simple dorsal root ganglion (DRG) explant culture system, allowing the selection of neuronal populations preferentially responsive to NGF or NT3. The reliability of this assay was first monitored by the differential expression of the NGF and NT3 receptors trkA and trkC, as well as that of neuropeptides and calcium-binding proteins. We then identified four differentially expressed sodium channels, two enriched in the NGF population and two others in the NT3 population. Finally, using an optimized RNA fingerprinting protocol, we identified 20 additional genes, all differentially expressed in DRG explants cultured with NGF or NT3. This approach thus allows the identification of large number of genes expressed in subpopulations of primary sensory neurons and opens the possibility of studying the molecular mechanisms of nociception and proprioception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteins of the kinesin superfamily define a class of microtubule-dependent motors that play crucial roles in cell division and intracellular transport. To study the molecular mechanism of axonal transport, a cDNA encoding a new kinesin-like protein called KIF3C was cloned from a mouse brain cDNA library. Sequence and secondary structure analysis revealed that KIF3C is a member of the KIF3 family. In contrast to KIF3A and KIF3B, Northern and Western analysis indicated that KIF3C expression is highly enriched in neural tissues such as brain, spinal cord, and retina. When anti-KIF3C antibodies were used to stain the cerebellum, the strongest signal came from the cell bodies and dendrites of Purkinje cells. In retina, anti-KIF3C mainly stains the ganglion cells. Immunolocalization showed that the KIF3C motor in spinal cord and sciatic nerve is mainly localized in cytoplasm. In spinal cord, the KIF3C staining was punctate; double labeling with anti-giantin and anti-KIF3C showed a clear concentration of the motor protein in the Golgi complex. Staining of ligated sciatic nerves demonstrated that the KIF3C motor accumulated at the proximal side of the ligated nerve, which suggests that KIF3C is an anterograde motor. Immunoprecipitation experiments revealed that KIF3C and KIF3A, but not KIF3B, were coprecipitated. These data, combined with previous data from other labs, indicate that KIF3C and KIF3B are “variable” subunits that associate with a common KIF3A subunit, but not with each other. Together these results suggest that KIF3 family members combinatorially associate to power anterograde axonal transport.