971 resultados para transforming growth factor beta


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and objective: Vascular endothelial growth factor (VEGF) is known to increase vascular permeability and promote angiogenesis. It is expressed in most types of pleural effusions. However, the exact role of VEGF in the development of pleural effusions has yet to be determined. The anti-VEGF mAb, bevacizumab, has been used in the treatment of cancer to reduce local angiogenesis and tumour progression. This study describes the acute effects of VEGF blockade on the expression of inflammatory cytokines and pleural fluid accumulation. Methods: One hundred and twelve New Zealand rabbits received intrapleural injections of either talc or silver nitrate. In each group, half the animals received an intravenous injection of bevacizumab, 30 min before the intrapleural agent was administered. Five animals from each subgroup were sacrificed 1, 2, 3, 4 or 7 days after the procedure. Twelve rabbits were used to evaluate vascular permeability using Evans`s blue dye. Pleural fluid volume and cytokines were quantified. Results: Animals pretreated with anti-VEGF antibody showed significant reductions in pleural fluid volumes after talc or silver nitrate injection. IL-8 levels, vascular permeability and macroscopic pleural adhesion scores were also reduced in the groups that received bevacizumab. Conclusions: This study showed that bevacizumab interferes in the acute phase of pleural inflammation induced by silver nitrate or talc, reinforcing the role of VEGF as a key mediator in the production of pleural effusions. The results also suggest that bevacizumab should probably be avoided in patients requiring pleurodesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strategies to promote bone repair have included exposure of cells to growth factor (GF) preparations from blood that generally include proteins as part of a complex mixture. This study aimed to evaluate the effects of such a mixture on different parameters of the development of the osteogenic phenotype in vitro. Osteoblastic cells were obtained by enzymatic digestion of human alveolar bone and cultured under standard osteogenic conditions until subconfluence. They were subcultured on Thermanox coverslips up to 14 days. Treated cultures were exposed during the first 7 days to osteogenic medium supplemented with a GFs + proteins mixture containing the major components found in platelet extracts [plate I et-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin] and to osteogenic medium alone thereafter. Control cultures were exposed only to the osteogenic medium. Treated cultures exhibited a significantly higher number of adherent cells from day 4 onward and of cycling cells at days 1 and 4, weak alkaline phosphatase (ALP) labeling, and significantly decreased levels of ALP activity and mRNA expression. At day 14, no Alizarin red-stained nodular areas were detected in cultures treated with GFs + proteins. Results were confirmed in the rat calvaria-derived osteogenic cell culture model. The addition of bone morphogenetic protein 7 or growth and differentiation factor 5 to treated cultures upregulated Runx2 and ALP mRNA expression, but surprisingly, ALP activity was not restored. These results showed that a mixture of GFs + proteins affects the development of the osteogenic phenotype both in human and rat cultures, leading to an increase in the number of cells, but expressed a less differentiated state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ligand-binding region of the low-density lipoprotein (LDL) receptor is formed by seven N-terminal, imperfect, cysteine-rich (LB) modules. This segment is followed by an epidermal growth factor precursor homology domain with two N-terminal, tandem, EGF-like modules that are thought to participate in LDL binding and recycling of the endocytosed receptor to the cell surface. EGF-A and the concatemer, EGF-AB, of these modules were expressed in Escherichia coli. Correct protein folding of EGF-A and the concatemer EGF-AB was achieved in the presence or absence of calcium ions, in contrast to the LB modules, which require them for correct folding. Homonuclear and heteronuclear H-1-N-15 NMR spectroscopy at 17.6 T was used to determine the three-dimensional structure of the concatemer. Both modules are formed by two pairs of short, anti-parallel beta -strands. In the concatemer, these modules have a fixed relative orientation, stabilized by calcium ion-binding and hydrophobic interactions at the interface. N-15 longitudinal and transverse relaxation rates, and {H-1}-N-15 heteronuclear NOEs were used to derive a model-free description of the backbone dynamics of the molecule. The concatemer appears relatively rigid, particularly near the calcium ion-binding site at the module interface, with an average generalized order parameter of 0.85 +/- 0.11. Some mutations causing familial hypercholesterolemia may now be rationalized. Mutations of D41, D43 and E44 in the EGF-B calcium ion-binding region may affect the stability of the linker and thus the orientation of the tandem modules. The diminutive core also provides little structural stabilization, necessitating the presence of disulfide bonds. The structure and dynamics of EGF-AB contrast with the N-terminal LB modules, which require calcium ions both for folding to form the correct disulfide connectivities and for maintenance of the folded structure, and are connected by highly mobile linking peptides. (C) 2001 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The function of interleukin-3 (or multi-CSF) in the hemopoietic system has been studied in great detail. Although its growth promoting activity on brain microglial cells has been confirmed both in vitro and in vivo, its presence in the brain and even in cultured brain cells has repeatedly been questioned. We have shown recently that isolated rat microglia express mRNA(IL-3) and synthesize IL-3 polypeptide. It is shown here by use of the PCR method, that mRNA(IL-3) is found also in C6 glioblastoma, in rat aggregate cultures, and in newborn and adult rat brain. Quantitation of amplified cDNA(IL-3) was achieved by non-competitive RT-PCR using an elongated internal standard. IL-3 messenger RNA was almost undetectable in vivo and low in (serum-free) aggregate cultures. In isolated microglia, mRNA(IL-3) was increased upon treatment with LPS, PHA, with the cytokines IL-1 or TNF-alpha, with retinoic acid, dbcAMP or the phorbol ester TPA. Effects of LPS were inhibited by dexamethasone, while the glucocorticoid by itself had no effect on basal IL-3 expression. LPS increased mRNA(IL-3) in a concentration-dependent manner beginning with 10 pg/ml and reaching plateau levels at 10 ng/ml. LPS also increased mRNAs of TNF-alpha and TNF-beta. TNF-alpha mRNA was already detectable in untreated microglia and LPS-increased levels were sustained for a few days. In contrast, TNF-beta mRNA was observed only between 4 and 16 h of LPS incubation. It was absent in LPS-free microglia, and after 24 h of LPS-treatment or later.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of any solid tumor depends on angiogenesis. Vascular endothelial growth factor (VEGF) plays a prominent role in vesical tumor angiogenesis regulation. Previous studies have shown that the peroxisome proliferator-activated receptor gamma (PPARgamma) was involved in the angiogenesis process. Here, we report for the first time that in two different human bladder cancer cell lines, RT4 (derived from grade I tumor) and T24 (derived from grade III tumor), VEGF (mRNA and protein) is differentially up-regulated by the three PPAR isotypes. Its expression is increased by PPARalpha, beta, and gamma in RT4 cells and only by PPARbeta in T24 cells via a transcriptional activation of the VEGF promoter through an indirect mechanism. This effect is potentiated by an RXR (retinoid-X-receptor), selective retinoid LG10068 providing support for a PPAR agonist-specific action on VEGF expression. While investigating the downstream signaling pathways involved in PPAR agonist-mediated up-regulation of VEGF, we found that only the MEK inhibitor PD98059 reduced PPAR ligand-induced expression of VEGF. These data contribute to a better understanding of the mechanisms by which PPARs regulate VEGF expression. They may lead to a new therapeutic approach to human bladder cancer in which excessive angiogenesis is a negative prognostic factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum-free aggregating cell cultures of fetal rat telencephalon treated with low doses (0.5 nM) of epidermal growth factor (EGF) showed a small, transient increase in DNA synthesis but no significant changes in total DNA and protein content. By contrast, treatment with high doses (13 nM) of EGF caused a marked stimulation of DNA synthesis as well as a net increase in DNA and protein content. The expression of the astrocyte-specific enzyme, glutamine synthetase, was greatly enhanced both at low and at high EGF concentrations. These results suggest that at low concentration EGF stimulates exclusively the differentiation of astrocytes, whereas at high concentration, EGF has also a mitogenic effect. Nonproliferating astrocytes in cultures treated with 0.4 microM 1-beta-D-arabinofuranosyl-cytosine were refractory to EGF treatment, indicating that their responsiveness to EGF is cell cycle-dependent. Binding studies using a crude membrane fraction of 5-day cultures showed a homogeneous population of EGF binding sites (Kd approximately equal to 2.6 nM). Specific EGF binding sites were found also in non-proliferating (and nonresponsive) cultures, although they showed slightly reduced affinity and binding capacity. This finding suggests that the cell cycle-dependent control of astroglial responsiveness to EGF does not occur at the receptor level. However, it was found that the specific EGF binding sites disappear with progressive cellular differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the role of heterotrimeric G protein signaling components in insulin and insulin-like growth factor I (IGF-I) action. In HIRcB cells and in 3T3L1 adipocytes, treatment with the Galpha(i) inhibitor (pertussis toxin) or microinjection of the Gbetagamma inhibitor (glutathione S-transferase-betaARK) inhibited IGF-I and lysophosphatidic acid-stimulated mitogenesis but had no effect on epidermal growth factor (EGF) or insulin action. In basal state, Galpha(i) and Gbeta were associated with the IGF-I receptor (IGF-IR), and after ligand stimulation the association of IGF-IR with Galpha(i) increased concomitantly with a decrease in Gbeta association. No association of Galpha(i) was found with either the insulin or EGF receptor. Microinjection of anti-beta-arrestin-1 antibody specifically inhibited IGF-I mitogenic action but had no effect on EGF or insulin action. beta-Arrestin-1 was associated with the receptors for IGF-I, insulin, and EGF in a ligand-dependent manner. We demonstrated that Galpha(i), betagamma subunits, and beta-arrestin-1 all play a critical role in IGF-I mitogenic signaling. In contrast, neither metabolic, such as GLUT4 translocation, nor mitogenic signaling by insulin is dependent on these protein components. These results suggest that insulin receptors and IGF-IRs can function as G protein-coupled receptors and engage different G protein partners for downstream signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies in the lab of Dr. Liliane Michalik, have shown thai the nuclear hormone receptor Peroxisome Proliferator Activated Receptor beta/delta (PPARß/ö) is an important regulator of skin homeostasis, being involved in the regulation of keratinocyte differentiation, inflammation, apoptosis, arid mouse skin wound healing. Studies of PPARß/ö knock out mice have suggested a possible role for this receptor in cancer. However, contradictory observations of the role for PPARß/ö on tumor growth have been published, depending on cellular contexts and biological models. Given the controversial role of PPARß/ö in skin carcinoma development, the main aim of this PhD work has been to further explore the implication of PPARß/ö in skin response to UV and skin tumor growth. This PhD dissertation is divided in four chapters. The first chapter describes the core part of the project, where I explored the changes in miRNA expression in the skin upon chronic UV irradiation of PPARß/ö wild type and knock-out mice. This analysis shed light on a miRNA- PPARß/ö signature and also predicted thai miR-21-3p (previously named miR-21*) is a key regulator of the PPARß/ö-dependent UV response in the pre-lesiona! skin. Using mice acutely UV-irradiated, ! further demonstrated that miR-21-3p is indirectly regulated by PPARß/ö through activation of Transforming Growth Factor (TGFß)-1 under UV exposure. I also show that miR-21-3p is deregulated in human cutaneous squamous celi carcinoma. In cultured keratinocytes, application of a miR-21 -3p mimic oligonucleotide sequence leads to the regulation of lipid metabolism-related pathway. In the second chapter, I demonstrate that the usage of an mRNA/miRNA combined bioinformatics analysis leads to the discovery of important pathways involved in the PPARß/ö-miRNA response of the skin to chronic UV irradiation, indeed, I validated angiogenesis and lipid metabolism as important functions regulated by PPARß/ö in this context. In the third chapter, we demonstrate that PPARß/5 knockout mice have decreased cutaneous squamous cell carcinomas incidence compared to wild type mice and that PPARß/5 directly activates the cSrc kinase gene. In the last chapter, we review novel insights into PPAR functions in keratinocytes and liver, with emphasis on PPARß/ö but also on PPARa. In summary, this PhD study shows that i) PPARß/5 is able to regulate biological function through regulation of miRNAs, and specifically through miR-21-3p, the passenger miRNA of the oncomiR miR-21, and that ii) the PPARß/5-dependent skin response to UV involves the regulation of angiogenesis and lipid metabolism. Furthermore, the bioinformatics study highlights the relevance of performing integrated mRNA and miRNA genome-wide studies in order to better screen mRNAs and/or miRNAs of interest in the biological context of diseases. - Des études préalables dans le laboratoire du Dr. Liliane Michalik ont démontré que le récepteur nucléaire PPARß/5 est un régulateur important de l'homéostasie de la peau, étant impliqué dans la régulation de la différenciation des keratinocytes, dans l'inflammation, dans l'apoptose et dans la cicatrisation de la peau chez !a souris. L'étude de souris knock-out pour le gène PPARß/5, ont suggérées un rôle possible de ce récepteur dans le cancer. Cependant, des observations opposées ont été publiées suggérant un rôle pro- ou anti- cancer selon le tissue impliqué et le type- cellulaire. En considérant cette controverse autour du rôle de PPARß/5 dans le développement des cancers de la peau, le but principal de mon projet de recherche aura été d'approfondir l'exploration du rôle de PPARß/5 dans la réponse de la peau aux UVs et dans le développement du cancer. Cette dissertation de thèse est divisée en quatre parties. Une première partie, représentant le coeur de mon travail de recherche, décrit la découverte de l'implication des microRNAs (rniRNAs) dans la réponse aux UVs de PPARß/ö et plus spécifiquement l'implication du miRNA miR- 21 -3p (précédemment nommé miR-21*). En étudiant un modèle de souris irradiées de manière aigüe aux UVs, nous montrons que ia régulation de miR-21-3p est PPARß/ö-däpenaante et que cette régulation à lieu par l'intermédiaire du facteur de transcription TGFß-1. Dans des cultures de keratinocytes Humains, la transfecticn d'une séquence oligonucléotidique similaire à celle de miR-21-3p (mimic), montre l'implication de rniR-21-3p dans des fonctions importantes pour le développement des cancers telles que le métabolisme des lipides. Dans un second chapitre, nous montrons que l'usage d'une méthode bioinformatique combinant l'expression des ARN messagers et des miRNAs permet de mettre en évidence des fonctions biologiques importantes lors de ia réponse de PPARß/ö à l'irradiation chronique. L'angiogenèse, le stress oxydatif et le métabolisme des lipides font partie de ces fonctions régulées par PPARß/5 dans la peau irradiée aux UVs. Nous mettons également en évidence la régulation du gène LpcatS par PPARß/5 dans la peau irradiée aux UV ainsi que dans des keratinocytes humains suggérant un rôle pour PPARß/5 dans le remodelage des lipides membranaires. Dans une troisième partie, nous établissons un lien entre la régulation de l'oncogène Src et l'activation de PPARß/5 dans les carcinomes spinocellulaires de la peau. Finalement dans un quatrième chapitre, nous faisons une revue des dernières recherches portées sur le rôle de PPARß/5 et de PPARa dans le foie et ia peau. En résumé ce projet de thèse représente un avancement pour la recherche sur rimplication de PPARß/5 dans la réponse aux UVs de la peau. Pour la première fois, un lien est établi entre ce facteur de transcription et la régulation de microRNAs dans le cadre du carcinome spinocellulare. Jusqu'alors resté dans l'ombre de rniR-21-5p, miR-21-3p est en fait fortement augmenté à la fois dans un modèle de souris d'irradiation aux UVs ainsi que dans ie carcinome spinocellulare chez i'humain. De nouvelles fonctions biologiques pour PPARß/5 ont été également mises en évidence dans ce travail, comme la régulation de l'angiogenèse ou du métabolisme des lipides dans Sa peau. De plus cette dissertation valorise l'intérêt d'une association entre le travail de laboratoire et celui de la bioinformatique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Axon morphogenesis is a complex process regulated by a variety of secreted molecules, including morphogens and growth factors, resulting in the establishment of the neuronal circuitry. Our previous work demonstrated that growth factors [Neurotrophins (NT) and Hepatocyte Growth Factor (HGF)] signal through β-catenin during axon morphogenesis. HGF signaling promotes axon outgrowth and branching by inducing β-catenin phosphorylation at Y142 and transcriptional regulation of T-Cell Factor (TCF) target genes. Here, we asked which genes are regulated by HGF signaling during axon morphogenesis. An array screening indicated that HGF signaling elevates the expression of chemokines of the CC and CXC families. In line with this, CCL7, CCL20, and CXCL2 significantly increase axon outgrowth in hippocampal neurons. Experiments using blocking antibodies and chemokine receptor antagonists demonstrate that chemokines act downstream of HGF signaling during axon morphogenesis. In addition, qPCR data demonstrates that CXCL2 and CCL5 expression is stimulated by HGF through Met/b-catenin/TCF pathway. These results identify CC family members and CXCL2 chemokines as novel regulators of axon morphogenesis downstream of HGF signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Hepatocyte growth factor (HGF) is overexpressed after acute kidney injury (AKI). The aim of this study was to evaluate the role of endogenous HGF in the progression of the inflammatory response in glycerol-induced AKI (Gly-AKI) in rats. Methods: Renal and systemic HGF expressions were evaluated during the development of Gly-AKI. Subsequently, the blockade of endogenous HGF was analyzed in rats treated with anti-HGF antibody concomitant to glycerol injection. Apoptosis, cell infiltration and chemokine and cytokine profiles were investigated. Results: We detected an early peak of renal and plasma HGF protein expressions 3 h after glycerol injection. The pharmacological blockade of the endogenous HGF exacerbated the renal impairment, the tubular apoptosis, the renal expression of monocyte chemoattractant protein-1 and the macrophage, CD43+, CD4+ and CD8+ T lymphocytes renal infiltration. The analysis of mRNA expressions of Th1 (t-bet, TNF-alpha, IL-1 beta) and Th2 (gata-3, IL-4, IL-10) cytokines showed a Th1-polarized response in Gly-AKI rats that was aggravated with the anti-HGF treatment. Conclusion: Endogenous HGF attenuates the renal inflammatory response, leukocyte infiltration and Th1 polarization after glycerol injection. The control of cellular immune response may partly explain the protective effect of endogenous HGF in the development of Gly-AKI. Copyright (C) 2008 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complete nucleotide sequence of a nerve growth factor precursor from Bothrops jararacussu snake (Bj-NGF) was determined by DNA sequencing of a clone from cDNA library prepared from the poly(A) + RNA of the venom gland of B.jararacussu. cDNA encoding Bj-NGF precursor contained 723 bp in length, which encoded a prepro-NGF molecule with 241 amino acid residues. The mature Bj-NGF molecule was composed of I 18 amino acid residues with theoretical pI and molecular weight of 8.31 and 13,537, respectively. Its amino acid sequence showed 97%, 96%, 93%, 86%, 78%, 74%, 76%, 76% and 55% sequential similarities with NGFs from Crotalus durissus terrificus, Agkistrodon halys pallas, Daboia (Vipera) russelli russelli, Bungarus multicinctus, Naja sp., mouse, human, bovine and cat, respectively. Phylogenetic analyses based on the amino acid sequences of 15 NGFs separate the Elapidae family (Naja and Bungarus) from those Crotalidae snakes (Bothrops, Crotalus and Agkistrodon). The three-dimensional structure of mature Bj-NGF was modeled based on the crystal structure of the human NGF. The model reveals that the core of NGF, formed by a pair of P-sheets, is highly conserved and the major mutations are both at the three beta-hairpin loops and at the reverse turn. (C) 2002 Societe francaise de biochimie et biologic moleculaire/Editions scientifiques et medicales Elsevier SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES: Serum amyloid A (SAA) is an acute-phase protein that has been recently correlated with obesity and insulin resistance. Therefore, we first examined whether human recombinant SAA (rSAA) could affect the proliferation, differentiation and metabolism of 3T3-L1 preadipocytes. DESIGN: Preadipocytes were treated with rSAA and analyzed for changes in viability and [H-3-methyl]-thymidine incorporation as well as cell cycle perturbations using flow cytometry analysis. The mRNA expression profiles of adipogenic factors during the differentiation protocol were also analyzed using real-time PCR. After differentiation, 2-deoxy-[1,2-H-3]-glucose uptake and glycerol release were evaluated. RESULTS: rSAA treatment caused a 2.6-fold increase in cell proliferation, which was consistent with the results from flow cytometry showing that rSAA treatment augmented the percentage of cells in the S phase (60.9 +/- 0.54%) compared with the control cells (39.8 +/- 2.2%, ***P<0.001). The rSAA-induced cell proliferation was mediated by the ERK1/2 signaling pathway, which was assessed by pretreatment with the inhibitor PD98059. However, the exposure of 3T3-L1 cells to rSAA during the differentiation process resulted in attenuated adipogenesis and decreased expression of adipogenesis-related factors. During the first 72 h of differentiation, rSAA inhibited the differentiation process by altering the mRNA expression kinetics of adipogenic transcription factors and proteins, such as PPAR gamma 2 (peroxisome proliferator-activated receptor gamma 2), C/EBP beta (CCAAT/enhancer-binding protein beta) and GLUT4. rSAA prevented the intracellular accumulation of lipids and, in fully differentiated cells, increased lipolysis and prevented 2-deoxy-[1,2-H-3]-glucose uptake, which favors insulin resistance. Additionally, rSAA stimulated the secretion of proinflammatory cytokines interleukin 6 and tumor necrosis factor alpha, and upregulated SAA3 mRNA expression during adipogenesis. CONCLUSIONS: We showed that rSAA enhanced proliferation and inhibited differentiation in 3T3-L1 preadipocytes and altered insulin sensitivity in differentiated cells. These results highlight the complex role of SAA in the adipogenic process and support a direct link between obesity and its co-morbidities such as type II diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focal osteochondral defects are still a challenging problem in joint surgery. We have developed a two-layered implant consisting of a basal porous beta-tricalcium phosphate (TCP) for bone reconstruction and a superficial fibrous collagen type I/III layer for cartilage regeneration. Fifty-four osteochondral defects in the trochlear groove of 27 Göttinger Minipigs were created and either left untreated, treated with the implant alone, or the implant augmented with an additional growth factor mixture, which was assumed to stimulate cell and tissue differentiation. Follow-up was 6, 12 and 52 weeks with n=6 for each group. The repair tissue was evaluated for its gross appearance and biomechanical properties. Histological sections were semi-quantitatively scored for their histomorphological structure. Treatment with the two-layered implant improved defect filling and subchondral bone repair at 6 and 12 weeks follow-up. The TCP was replaced by cancellous bone at 52 weeks. Cartilage repair tissue mainly consisted of fibrocartilage and showed a moderate cell density up to the joint surface. Growth factor treatment improved the mechanical and histomorphological properties of the cartilage repair tissue at 12, but not at 52 weeks postoperatively. In conclusion, the two-layered collagen-TCP implant augmented with chondroinductive growth factors seems a promising new option for the treatment of deep osteochondral defects in joint surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many human carcinomas, expression of the lymphangiogenic factor vascular endothelial growth factor-D (VEGF-D) correlates with up-regulated lymphangiogenesis and regional lymph node metastasis. Here, we have used the Rip1Tag2 transgenic mouse model of pancreatic beta-cell carcinogenesis to investigate the functional role of VEGF-D in the induction of lymphangiogenesis and tumor progression. Expression of VEGF-D in beta cells of single-transgenic Rip1VEGF-D mice resulted in the formation of peri-insular lymphatic lacunae, often containing leukocyte accumulations and blood hemorrhages. When these mice were crossed to Rip1Tag2 mice, VEGF-D-expressing tumors also exhibited peritumoral lymphangiogenesis with lymphocyte accumulations and hemorrhages, and they frequently developed lymph node and lung metastases. Notably, tumor outgrowth and blood microvessel density were significantly reduced in VEGF-D-expressing tumors. Our results demonstrate that VEGF-D induces lymphangiogenesis, promotes metastasis to lymph nodes and lungs, and yet represses hemangiogenesis and tumor outgrowth. Because a comparable transgenic expression of vascular endothelial growth factor-C (VEGF-C) in Rip1Tag2 has been shown previously to provoke lymphangiogenesis and lymph node metastasis in the absence of any distant metastasis, leukocyte infiltration, or angiogenesis-suppressing effects, these results reveal further functional differences between VEGF-D and VEGF-C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liver fibrosis is characterized by high expression of the key profibrogenic cytokine transforming growth factor (TGF)-beta and the natural tissue inhibitor of metalloproteinases (TIMP)-1, leading to substantial accumulation of extracellular matrix. Liver fibrosis originates from various chronic liver diseases, such as chronic viral hepatitis that, to date, cannot be treated sufficiently. Thus, novel therapeutics, for example, those derived from Oriental medicine, have gained growing attention. In Korea, extracts prepared from Lindera obtusiloba are used for centuries for treatment of inflammation, improvement of blood circulation and prevention of liver damage, but experimental evidence of their efficacy is lacking. We studied direct antifibrotic effects in activated hepatic stellate cells (HSCs), the main target cell in the fibrotic liver. L. obtusiloba extract (135 mug/ml) reduced the de novo DNA synthesis of activated rat and human HSCs by about 90%, which was not accompanied by cytotoxicity of HSC, primary hepatocytes and HepG2 cells, pointing to induction of cellular quiescence. As determined by quantitative polymerase chain reaction, simultaneous treatment of HSCs with TGF-beta and L. obtusiloba extract resulted in reduction of TIMP-1 expression to baseline level, disruption of the autocrine loop of TGF-beta autoinduction and increased expression of fibrolytic matrix metalloproteinase (MMP)-3. In addition, L. obtusiloba reduced gelatinolytic activity of HSC by interfering with profibrogenic MMP-2 activity. Since L. obtusiloba extract prevented intracellular oxidative stress experimentally induced by tert-butylhydroperoxide, we concluded that the direct antifibrotic effect of L. obtusiloba extract might be mediated by antioxidant activity. Thus, L. obtusiloba, traditionally used in Oriental medicine, may complement treatment of chronic liver disease.