929 resultados para transdermal patch
Resumo:
Gall-inducing insects of an Araucaria Forest in southern Brazil. Diversity of galling insects is reported for the first time in an Araucaria Forest site. We address gall characteristics, host plant identification and the inducer identification and provide additional information about sites of gall occurrence in a mosaic of continuous forest and natural forest patches. After 40h of sampling we found 57 species of five insect orders, the majority of them Diptera (Cecidomyiidae), galling 43 host plant species, which in turn belonged to 18 host plant families. Stem and buds together, compared to leaves, harbored more galls, which were mostly glabrous, isolated, fusiform and green. Myrtaceae, Asteraceae and Melastomataceae were the most representative host families. Similarities in gall characteristics to what has been reported in the literature probably result from spatial correlation in a larger scale driven by ecological and evolutionary processes.
Resumo:
Adjustment of Na+ balance in extracellular fluids is achieved by regulated Na+ transport involving the amiloride-sensitive epithelial Na+ channel (ENaC) in the distal nephron. In this context, ENaC is controlled by a number of hormones, including vasopressin, which promotes rapid translocation of water and Na+ channels to the plasma membrane and long-term effects on transcription of vasopressin-induced and -reduced transcripts. We have identified a mRNA encoding the deubiquitylating enzyme ubiquitin-specific protease 10 (Usp10), whose expression is increased by vasopressin at both the mRNA and the protein level. Coexpression of Usp10 in ENaC-transfected HEK-293 cells causes a more than fivefold increase in amiloride-sensitive Na+ currents, as measured by whole cell patch clamping. This is accompanied by a three- to fourfold increase in surface expression of alpha- and gamma-ENaC, as shown by cell surface biotinylation experiments. Although ENaC is well known to be regulated by its direct ubiquitylation, Usp10 does not affect the ubiquitylation level of ENaC, suggesting an indirect effect. A two-hybrid screen identified sorting nexin 3 (SNX3) as a novel substrate of Usp10. We show that it is a ubiquitylated protein that is degraded by the proteasome; interaction with Usp10 leads to its deubiquitylation and stabilization. When coexpressed with ENaC, SNX3 increases the channel's cell surface expression, similarly to Usp10. In mCCD(cl1) cells, vasopressin increases SNX3 protein but not mRNA, supporting the idea that the vasopressin-induced Usp10 deubiquitylates and stabilizes endogenous SNX3 and consequently promotes cell surface expression of ENaC
Resumo:
The effects of patch size and isolation on metapopulation dynamics have received wide empirical support and theoretical formalization. By contrast, the effects of patch quality seem largely underinvestigated, partly due to technical difficulties in properly assessing quality. Here we combine habitat-quality modeling with four years of demographic monitoring in a metapopulation of greater white-toothed shrews (Crocidura russula) to investigate the role of patch quality on metapopulation processes. Together, local patch quality and connectivity significantly enhanced local population sizes and occupancy rates (R2 = 14% and 19%, respectively). Accounting for the quality of patches connected to the focal one and acting as potential sources improved slightly the model explanatory power for local population sizes, pointing to significant source-sink dynamics. Local habitat quality, in interaction with connectivity, also increased colonization rate (R2 = 28%), suggesting the ability of immigrants to target high-quality patches. Overall, patterns were best explained when assuming a mean dispersal distance of 800 m, a realistic value for the species under study. Our results thus provide evidence that patch quality, in interaction with connectivity, may affect major demographic processes.
Resumo:
PURPOSE: To describe a probable case of bilateral diffuse uveal melanocytic proliferation (BDUMP) with unusual manifestations and prognosis. DESIGN: Case report. METHODS: Clinical follow-up of the patient lasting 50 months with recurrent fundus examination using color photographs, angiography, ultrasound, and optical coherence tomography. Serological and radiological investigations were performed to assess possible extraocular alterations. RESULTS: In both eyes patch-shaped pigmented alterations of the fundus were revealed. Fluorescein and indocyanine angiography evidenced corresponding areas of hyperfluorescent pinpoints and subtle serous detachment of the neurosensory retina, respectively. Ten months after the initial evaluation, flat pigmentary lesions appeared in the superior scleral surface of the right eye and underwent histological examination. After an initial decrease in visual acuity, the patient experienced a spontaneous recovery. He did not develop cataracts or any systemic malignancies. CONCLUSIONS: Although not all the criteria for the diagnosis were fulfilled, clinical findings were compatible with BDUMP. The presence of scleral pigmented lesions and the good visual prognosis may widen the spectrum of this rare disease.
Resumo:
The Neolithic was marked by a transition from small and relatively egalitarian groups to much larger groups with increased stratification. But, the dynamics of this remain poorly understood. It is hard to see how despotism can arise without coercion, yet coercion could not easily have occurred in an egalitarian setting. Using a quantitative model of evolution in a patch-structured population, we demonstrate that the interaction between demographic and ecological factors can overcome this conundrum. We model the coevolution of individual preferences for hierarchy alongside the degree of despotism of leaders, and the dispersal preferences of followers. We show that voluntary leadership without coercion can evolve in small groups, when leaders help to solve coordination problems related to resource production. An example is coordinating construction of an irrigation system. Our model predicts that the transition to larger despotic groups will then occur when: (i) surplus resources lead to demographic expansion of groups, removing the viability of an acephalous niche in the same area and so locking individuals into hierarchy; (ii) high dispersal costs limit followers' ability to escape a despot. Empirical evidence suggests that these conditions were probably met, for the first time, during the subsistence intensification of the Neolithic.
Resumo:
BACKGROUND: Mutations in SCN4A may lead to myotonia. METHODS: Presentation of a large family with myotonia, including molecular studies and patch clamp experiments using human embryonic kidney 293 cells expressing wild-type and mutated channels. RESULTS: In a large family with historic data on seven generations and a clear phenotype, including myotonia at movement onset, with worsening by cold temperature, pregnancy, mental stress, and especially after rest after intense physical activity, but without weakness, the phenotype was linked with the muscle sodium channel gene (SCN4A) locus, in which a novel p.I141V mutation was found. This modification is located within the first transmembrane segment of domain I of the Na(v)1.4 alpha subunit, a region where no mutation has been reported so far. Patch clamp experiments revealed a mutation-induced hyperpolarizing shift (-12.9 mV) of the voltage dependence of activation, leading to a significant increase (approximately twofold) of the window current amplitude. In addition, the mutation shifted the voltage dependence of slow inactivation by -8.7 mV and accelerated the entry to this state. CONCLUSIONS: We propose that the gain-of-function alteration in activation leads to the observed myotonic phenotype, whereas the enhanced slow inactivation may prevent depolarization-induced paralysis.
Resumo:
During the year 2005, the chief residents of the University Medical Outpatient Clinic of Lausanne have done a database of useful articles for daily practice, scientifically validated and with excellent didactic quality, from 10 electronic journals. They have used those selected articles in personal meetings between the chief residents on a regular basis and the possibility to access the database by the junior physicians. Six of these articles concerning different topics (depression, tuberculosis detection, anticoagulation at home, cholinesterase inhibitors, insomnia and therapies, transdermal nitroglycerin and tendinopathies) are presented.
Resumo:
Chloride channels represent a group of targets for major clinical indications. However, molecular screening for chloride channel modulators has proven to be difficult and time-consuming as approaches essentially rely on the use of fluorescent dyes or invasive patch-clamp techniques which do not lend themselves to the screening of large sets of compounds. To address this problem, we have developed a non-invasive optical method, based on digital holographic microcopy (DHM), allowing monitoring of ion channel activity without using any electrode or fluorescent dye. To illustrate this approach, GABA(A) mediated chloride currents have been monitored with DHM. Practically, we show that DHM can non-invasively provide the quantitative determination of transmembrane chloride fluxes mediated by the activation of chloride channels associated with GABA(A) receptors. Indeed through an original algorithm, chloride currents elicited by application of appropriate agonists of the GABA(A) receptor can be derived from the quantitative phase signal recorded with DHM. Finally, chloride currents can be determined and pharmacologically characterized non-invasively simultaneously on a large cellular sampling by DHM.
Resumo:
Purpose: To examine the possible role of H+-activated acid-sensing ion channels (ASICs) in pain perception we characterized their expression in bladder dome biopsies of Bladder Pain Syndrome (BPS) patients and controls, in cultured human urothelium and in urothelial TEU-2 cells.Materials and Methods: Cold cut biopsies from the bladder dome were obtained in 8 asymptomatic controls and 28 patients with symptoms of BPS. ASIC expression was analyzed by QPCR and immunofluorescence. The channel function was measured by electrophysiology.Results: ASIC1a, ASIC2a and ASIC3 mRNAs were detected in human bladder. Similar amounts of ASIC1a and -3 were detected in detrusor smooth muscle, whereas in urothelium ASIC3 levels were higher than -1a. ASIC2a mRNA levels were lower than either -1a or -3 in both layers. ASIC currents were measured in TEU-2 cells and in primary cultures of human urothelium, and ASIC expression was confirmed by QPCR. Differentiation of TEU-2 cells caused an up-regulation of ASIC2a and ASIC3, and a down-regulation of ASIC1a mRNAs. BPS patients showed an up-regulation of ASIC2a and -3 mRNA, whereas ASIC1a remained unchanged. In contrast, the mRNA levels of TRPV1 were down-regulated during BPS. All differences were statistically significant (p<0.05)Conclusions: Several different ASIC subunits are expressed in human bladder and TEU-2 cells, where their levels are regulated during urothelial differentiation. An up-regulation of ASIC2a and -3 in BPS suggests their involvement in increased pain and hyperalgesia. A down-regulation of TRPV1 mRNA levels might indicate a different regulatory mechanism, controlling its expression in human bladder.
Resumo:
In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
Resumo:
The in situ hybridization Allen Mouse Brain Atlas was mined for proteases expressed in the somatosensory cerebral cortex. Among the 480 genes coding for protease/peptidases, only four were found enriched in cortical interneurons: Reln coding for reelin; Adamts8 and Adamts15 belonging to the class of metzincin proteases involved in reshaping the perineuronal net (PNN) and Mme encoding for Neprilysin, the enzyme degrading amyloid β-peptides. The pattern of expression of metalloproteases (MPs) was analyzed by single-cell reverse transcriptase multiplex PCR after patch clamp and was compared with the expression of 10 canonical interneurons markers and 12 additional genes from the Allen Atlas. Clustering of these genes by K-means algorithm displays five distinct clusters. Among these five clusters, two fast-spiking interneuron clusters expressing the calcium-binding protein Pvalb were identified, one co-expressing Pvalb with Sst (PV-Sst) and another co-expressing Pvalb with three metallopeptidases Adamts8, Adamts15 and Mme (PV-MP). By using Wisteria floribunda agglutinin, a specific marker for PNN, PV-MP interneurons were found surrounded by PNN, whereas the ones expressing Sst, PV-Sst, were not.
Resumo:
Two mutually exclusive hypotheses have been put forward to explain the evolution and adaptive function of melanin-based color traits. According to sexual selection theory melanism is a directionally selected signal of individual quality, whereas theory on the maintenance of genetic polymorphism proposes that alternative melanin-based variants achieve equal fitness. Alpine swift (Apus melba) males and females have a conspicuous patch of white feathers on the breast with their rachis varying continuously from white to black, and hence the breast varies from white to striated. If this trait is a sexually selected signal of quality, its expression should be condition dependent and the degree of melanism directionally selected. If variation in melanism is a polymorphism, its expression should be genetically determined and fitness of melanin-based variants equal. We experimentally tested these predictions by exchanging eggs or hatchlings between randomly chosen nests and by estimating survival and reproduction in relation to melanism. We found that breast melanism is heritable and that the environment and body condition do not significantly influence its expression. Between 5 and 50 days of age nestlings were heavier and their wings longer when breast feathers of their biological father were blacker, and they also fledged at a younger age. This shows that aspects of offspring quality covary positively with the degree of melanism. However, this did not result in directional selection because nestling survival and recruitment in the local breeding population were not associated with father breast melanism. Furthermore, adult survival, age at first reproduction and probability of skipping reproduction did not covary with the degree of melanism. Genetic variation in breast melanism is therefore maintained either because nonmelanic males achieve fitness similar to melanic males via a different route than producing fast-growing offspring, or because the advantage of producing fast-growing offspring is not sufficiently pronounced to result in directional selection.
Resumo:
La douleur est définie par l'International association for the study of pain (IASP) comme une expérience sensorielle et émotionnelle désagréable, associée à une lésion tissulaire réelle ou à une lésion potentielle, ou décrite en des termes évoquant une telle lésion. Sa fonction est de signaler une menace potentielle pour l'intégrité de l'organisme. Mais ce ressenti peut persister ou être présent en l'absence d'une telle menace. Il s'agit dans ce cas d'une douleur pathologique dont les mécanismes étiologiques et physiopathologiques ne sont pas encore bien compris.¦Ce travail de maîtrise a pour objectif l'étude d'une mutation génétique responsable d'un syndrome douloureux chronique. Cette mutation génétique a été décelée chez une famille de patients lausannois atteints de PEPD (paroxysmal extreme pain disorder) et touche le canal sodique Nav1.7. Ce canal est exprimé principalement dans les neurones des ganglions sensitifs et des ganglions sympathiques. Il est considéré comme responsable de la transmission de la douleur vers le SNC car des mutations « perte de fonction » de ce canal sont à l'origine d'une insensibilité congénitale à la douleur. Les mutations « gain de fonction » de ce canal sont à l'origine de syndromes douloureux chroniques tel le syndrome PEPD ou l'érythromélalgie. La mutation présente chez les patients lausannois est située entre les segments transmembranaires S4 et S5 sur le 4ème domaine de la sous-unité α du canal sodique Nav1.7. Cette mutation ne touche qu'un seul acide aminé, en position 1612 où une leucine est remplacée par une proline.¦Les méthodes employées dans ce travail sont la mutagenèse pour générer des plasmides contenant le gène SCN9A muté (T4835C) codant pour le canal Nav1.7 muté (L1612P), l'amplification de ces plasmides dans des bactéries et la transfection de cellules HEK293 avec les plasmides contenant le gène SCN9A muté (T4835C). Nous avons ainsi pu induire l'expression du canal muté dans des cellules HEK293. Ces cellules pourront être utilisées par la suite pour enregistrer les courants ioniques transitant à travers les canaux exprimés à la membrane plasmique. Cela permettra de comparer les propriétés électrophysiologiques du canal Nav1.7 muté L1612P avec celles du canal non muté. Nous avons également recherché l'expression d'ARNm codant pour les composants des canaux sodiques (sous-unités α et β) dans les cellules HEK293 non transfectées par la technique de qRT-PCR. Ceci afin de répertorier les composants des canaux sodiques exprimés constitutivement par les cellules HEK293 qui pourraient avoir une influence sur les mesures électrophysiologiques qui seront effectuées sur ces cellules.¦Ce travail a permis de générer des plasmides contenant le gène SCN9A muté T4835C qui sont des outils nécessaires à la réalisation d'études plus détaillées sur le fonctionnement et les propriétés du canal Nav1.7 muté L1612P. Ce travail a également permis, par la méthode de la qRT-PCR, une analyse de l'expression d'ARNm codant pour la sous-unité α du canal Nav1.7 et des sous-unités β 1 à 4 par les cellules HEK293. Les résultats ainsi obtenus permettent de mieux caractériser le transcriptome des cellules HEK293 et seront utiles pour interpréter avec plus de précisions les expérimentations électrophysiologiques utilisant ces cellules. L'étude électrophysiologique des cellules HEK293 exprimant le canal Nav1.7 muté par la technique du patch clamp est en cours. Elle sera poursuivie dans le cadre d'un travail de recherche dépassant le cadre de ce travail de maîtrise. Les cellules HEK293 exprimant le canal Nav1.7 muté (L1612P) pourront être également utilisées pour tester l'effet de divers médicaments sur ce canal. Ce qui pourrait d'une part permettre d'optimiser le traitement des patients souffrant de PEPD et d'autre part être utile pour tout traitement à but antalgique.
Resumo:
Bacterial degradation of polycyclic aromatic hydrocarbons (PAHs), ubiquitous contaminants from oil and coal, is typically limited by poor accessibility of the contaminant to the bacteria. In order to measure PAH availability in complex systems, we designed a number of diffusion-based assays with a double-tagged bacterial reporter strain Burkholderia sartisoli RP037-mChe. The reporter strain is capable of mineralizing phenanthrene (PHE) and induces the expression of enhanced green fluorescent protein (eGFP) as a function of the PAH flux to the cell. At the same time, it produces a second autofluorescent protein (mCherry) in constitutive manner. Quantitative epifluorescence imaging was deployed in order to record reporter signals as a function of PAH availability. The reporter strain expressed eGFP proportionally to dosages of naphthalene or PHE in batch liquid cultures. To detect PAH diffusion from solid materials the reporter cells were embedded in 2 cm-sized agarose gel patches, and fluorescence was recorded over time for both markers as a function of distance to the PAH source. eGFP fluorescence gradients measured on known amounts of naphthalene or PHE served as calibration for quantifying PAH availability from contaminated soils. To detect reporter gene expression at even smaller diffusion distances, we mixed and immobilized cells with contaminated soils in an agarose gel. eGFP fluorescence measurements confirmed gel patch diffusion results that exposure to 2-3 mg lampblack soil gave four times higher expression than to material contaminated with 10 or 1 (mg PHE) g(-1).
Resumo:
Regulation of the epithelial Na(+) channel (ENaC) by ubiquitylation is controlled by the activity of two counteracting enzymes, the E3 ubiquitin-protein ligase Nedd4-2 (mouse ortholog of human Nedd4L) and the ubiquitin-specific protease Usp2-45. Previously, Usp2-45 was shown to decrease ubiquitylation and to increase surface function of ENaC in Xenopus laevis oocytes, whereas the splice variant Usp2-69, which has a different N-terminal domain, was inactive toward ENaC. It is shown here that the catalytic core of Usp2 lacking the N-terminal domain has a reduced ability relative to Usp2-45 to enhance ENaC activity in Xenopus oocytes. In contrast, its catalytic activity toward the artificial substrate ubiquitin-AMC is fully maintained. The interaction of Usp2-45 with ENaC exogenously expressed in HEK293 cells was tested by coimmunoprecipitation. The data indicate that different combinations of ENaC subunits, as well as the α-ENaC cytoplasmic N-terminal but not C-terminal domain, coprecipitate with Usp2-45. This interaction is decreased but not abolished when the cytoplasmic ubiquitylation sites of ENaC are mutated. Importantly, coimmunoprecipitation in HEK293 cells and GST pull-down of purified recombinant proteins show that both the catalytic domain and the N-terminal tail of Usp2-45 physically interact with the HECT domain of Nedd4-2. Taken together, the data support the conclusion that Usp2-45 action on ENaC is promoted by various interactions, including through binding to Nedd4-2 that is suggested to position Usp2-45 favorably for ENaC deubiquitylation.