844 resultados para titanium scaffold


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The aim of this prospective case series study was to evaluate the short-term success rates of titanium screw-type implants with a chemically modified sand-blasted and acid-etched (mod SLA) surface after 3 weeks of healing. MATERIAL AND METHODS: A total of 56 implants were inserted in the posterior mandible of 40 partially edentulous patients exhibiting bone densities of class I to III. After a healing period of 3 weeks, all implants were functionally loaded with a screw-retained crown or fixed dental prosthesis. The patients were recalled at weeks 4, 7, 12, and 26 for monitoring and assessment of clinical and radiological parameters, including implant stability quotient (ISQ) measurements. RESULTS: None of the implants failed to integrate. However, two implants were considered "spinners" at day 21 and left unloaded for an extended period. Therefore, 96.4% of the inserted implants were loaded according to the protocol tested. All 56 implants including the "spinners" showed favorable clinical and radiographic findings at the 6-month follow-up examination. The ISQ values increased steadily throughout the follow-up period. At the time of implant placement, the range of ISQ values exhibited a mean of 74.33, and by week 26, a mean value of 83.82 was recorded. Based on strict criteria, all 56 implants were considered successfully integrated, resulting in a 6-month survival and success rate of 100.0%. CONCLUSION: This prospective study using an early-loading protocol after 3 weeks of healing demonstrated that titanium implants with the modified SLA surface can achieve and maintain successful tissue integration over a period of at least 6 months. The ISQ method seems feasible to monitor implant stability during the initial wound-healing period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A poly(ethylene glycol) (PEG)-based hydrogel was used as a scaffold for chondrocyte culture. Branched PEG-vinylsulfone macromers were end-linked with thiol-bearing matrix metalloproteinase (MMP)-sensitive peptides (GCRDGPQGIWGQDRCG) to form a three-dimensional network in situ under physiologic conditions. Both four- and eight-armed PEG macromer building blocks were examined. Increasing the number of PEG arms increased the elastic modulus of the hydrogels from 4.5 to 13.5 kPa. PEG-dithiol was used to prepare hydrogels that were not sensitive to degradation by cell-derived MMPs. Primary bovine calf chondrocytes were cultured in both MMP-sensitive and MMP-insensitive hydrogels, formed from either four- or eight-armed PEG. Most (>90%) of the cells inside the gels were viable after 1 month of culture and formed cell clusters. Gel matrices with lower elastic modulus and sensitivity to MMP-based matrix remodeling demonstrated larger clusters and more diffuse, less cell surface-constrained cell-derived matrix in the chondron, as determined by light and electron microscopy. Gene expression experiments by real-time RT-PCR showed that the expression of type II collagen and aggrecan was increased in the MMP-sensitive hydrogels, whereas the expression level of MMP-13 was increased in the MMP-insensitive hydrogels. These results indicate that cellular activity can be modulated by the composition of the hydrogel. This study represents one of the first examples of chondrocyte culture in a bioactive synthetic material that can be remodeled by cellular protease activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large number of drugs and biologically relevant molecules contain heterocyclic systems. Often the presence of hetero atoms or groupings imparts preferential specificities in their biological responses. Amongst the heterocyclic systems, thiazolidine is a biologically important scaffold known to be associated with several biological activities. Some of the prominent biological responses attributed to this skeleton are antiviral, antibacterial, antifungal, antihistaminic, hypoglycemic, anti-inflammatory activities. This diversity in the biological response profiles of thiazolidine has attracted the attention of many researchers to explore this skeleton to its multiple potential against several activities. Many of these synthetic and biological explorations have been subsequently analyzed in detailed quantitative structure-activity relationship (QSAR) studies to correlate the respective structural features and physicochemical properties with the activities to identify the important structural components in deciding their activity behavior. In this, drugs or any biologically active molecules may be viewed as structural frames consisting of strategically positioned functional groups that will interact effectively with the complementary groups/sites of the receptor. With this in focus, the present article reviews the QSAR studies of diverse biological activities of the thiazolidines published during the past decade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Long-term studies of ≥10 years are important milestones to get a better understanding of potential factors causing implant failures or complications. PURPOSE The present study investigated the long-term outcomes of titanium dental implants with a rough, microporous surface (titanium plasma sprayed [TPS]) and the associated biologic and technical complications in partially edentulous patients with fixed dental prostheses over a 20-year follow-up period. MATERIALS AND METHODS Sixty-seven patients, who received 95 implants in the 1980s, were examined with well-established clinical and radiographic parameters. Based on these findings, each implant was classified as either successful, surviving, or failed. RESULTS Ten implants in nine patients were lost during the observation period, resulting in an implant survival rate of 89.5%. Radiographically, 92% of the implants exhibited crestal bone loss below 1 mm between the 1- and 20-year follow-up examinations. Only 8% yielded peri-implant bone loss of >1 mm and none exhibited severe bone loss of more than 1.8 mm. During the observation period, 19 implants (20%) experienced a biologic complication with suppuration. Of these 19 implants, 13 implants (13.7%) had been treated and were successfully maintained over the 20-year follow-up period. Therefore, the 20-year implant success rate was 75.8 or 89.5% depending on the different success criteria. Technical complications were observed in 32%. CONCLUSION The present study is the first to report satisfactory success rates after 20 years of function of dental implants with a TPS surface in partially edentulous patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Crohn's disease is a chronic inflammatory process that has recently been associated with a higher risk of early implant failure. Herein we provide information on the impact of colitis on peri-implant bone formation using preclinical models of chemically induced colitis. METHODS Colitis was induced by intrarectal instillation of 2,4,6-trinitro-benzene-sulfonic-acid (TNBS). Colitis was also induced by feeding rats dextran-sodium-sulfate (DSS) in drinking water. One week after disease induction, titanium miniscrews were inserted into the tibia. Four weeks after implantation, peri-implant bone volume per tissue volume (BV/TV) and bone-to-implant contacts (BIC) were determined by histomorphometric analysis. RESULTS Cortical histomorphometric parameters were similar in the control (n = 10), DSS (n = 10) and TNBS (n = 8) groups. Cortical BV/TV was 92.2 ± 3.7%, 92.0 ± 3.0% and 92.6 ± 2.7%. Cortical BIC was 81.3 ± 8.8%, 83.2 ± 8.4% and 84.0 ± 7.0%, respectively. No significant differences were observed when comparing the medullary BV/TV and BIC (19.5 ± 6.4%, 16.2 ± 5.6% and 15.4 ± 9.0%) and (48.8 ± 12.9%, 49.2 ± 6.2 and 41.9 ± 11.7%), respectively. Successful induction of colitis was confirmed by loss of body weight and colon morphology. CONCLUSIONS The results suggest bone regeneration around implants is not impaired in chemically induced colitis models. Considering that Crohn's disease can affect any part of the gastrointestinal tract including the mouth, our model only partially reflects the clinical situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Optical scanners combined with computer-aided design and computer-aided manufacturing (CAD/CAM) technology provide high accuracy in the fabrication of titanium (TIT) and zirconium dioxide (ZrO) bars. The aim of this study was to compare the precision of fit of CAD/CAM TIT bars produced with a photogrammetric and a laser scanner. METHODS Twenty rigid CAD/CAM bars were fabricated on one single edentulous master cast with 6 implants in the positions of the second premolars, canines and central incisors. A photogrammetric scanner (P) provided digitized data for TIT-P (n=5) while a laser scanner (L) was used for TIT-L (n=5). The control groups consisted of soldered gold bars (gold, n=5) and ZrO-P with similar bar design. Median vertical distance between implant and bar platforms from non-tightened implants (one-screw test) was calculated from mesial, buccal and distal scanning electron microscope measurements. RESULTS Vertical microgaps were not significantly different between TIT-P (median 16μm; 95% CI 10-27μm) and TIT-L (25μm; 13-32μm). Gold (49μm; 12-69μm) had higher values than TIT-P (p=0.001) and TIT-L (p=0.008), while ZrO-P (35μm; 17-55μm) exhibited higher values than TIT-P (p=0.023). Misfit values increased in all groups from implant position 23 (3 units) to 15 (10 units), while in gold and TIT-P values decreased from implant 11 toward the most distal implant 15. SIGNIFICANCE CAD/CAM titanium bars showed high precision of fit using photogrammetric and laser scanners. In comparison, the misfit of ZrO bars (CAM/CAM, photogrammetric scanner) and soldered gold bars was statistically higher but values were clinically acceptable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: To assess observations with multimodality imaging of the Absorb bioresorbable everolimus-eluting vascular scaffold performed in two consecutive cohorts of patients who were serially investigated either at 6 and 24 months or at 12 and 36 months. Methods and results: In the ABSORB multicentre single-arm trial, 45 patients (cohort B1) and 56 patients (cohort B2) underwent serial invasive imaging, specifically quantitative coronary angiography (QCA), intravascular ultrasound (IVUS), radiofrequency backscattering (IVUS-VH) and optical coherence tomography (OCT). Between one and three years, late luminal loss remained unchanged (6 months: 0.19 mm, 1 year: 0.27 mm, 2 years: 0.27 mm, 3 years: 0.29 mm) and the in-segment angiographic restenosis rate for the entire cohort B (n=101) at three years was 6%. On IVUS, mean lumen, scaffold, plaque and vessel area showed enlargement up to two years. Mean lumen and scaffold area remained stable between two and three years whereas significant reduction in plaque behind the struts occurred with a trend toward adaptive restrictive remodelling of EEM. Hyperechogenicity of the vessel wall, a surrogate of the bioresorption process, decreased from 23.1% to 10.4% with a reduction of radiofrequency backscattering for dense calcium and necrotic core. At three years, the count of strut cores detected on OCT increased significantly, probably reflecting the dismantling of the scaffold; 98% of struts were covered. In the entire cohort B (n=101), the three-year major adverse cardiac event rate was 10.0% without any scaffold thrombosis. Conclusions: The current investigation demonstrated the dynamics of vessel wall changes after implantation of a bioresorbable scaffold, resulting at three years in stable luminal dimensions, a low restenosis rate and a low clinical major adverse cardiac events rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS To assess serially the edge vascular response (EVR) of a bioresorbable vascular scaffold (BVS) compared to a metallic everolimus-eluting stent (EES). METHODS AND RESULTS Non-serial evaluations of the Absorb BVS at one year have previously demonstrated proximal edge constrictive remodelling and distal edge changes in plaque composition with increase of the percent fibro-fatty (FF) tissue component. The 5 mm proximal and distal segments adjacent to the implanted devices were investigated serially with intravascular ultrasound (IVUS), post procedure, at six months and at two years, from the ABSORB Cohort B1 (n=45) and the SPIRIT II (n=113) trials. Twenty-two proximal and twenty-four distal edge segments were available for analysis in the ABSORB Cohort B1 trial. In the SPIRIT II trial, thirty-three proximal and forty-six distal edge segments were analysed. At the 5-mm proximal edge, the vessels treated with an Absorb BVS from post procedure to two years demonstrated a lumen loss (LL) of 6.68% (-17.33; 2.08) (p=0.027) with a trend toward plaque area increase of 7.55% (-4.68; 27.11) (p=0.06). At the 5-mm distal edge no major changes were evident at either time point. At the 5-mm proximal edge the vessels treated with a XIENCE V EES from post procedure to two years did not show any signs of LL, only plaque area decrease of 6.90% (-17.86; 4.23) (p=0.035). At the distal edge no major changes were evident with regard to either lumen area or vessel remodelling at the same time point. CONCLUSIONS The IVUS-based serial evaluation of the EVR up to two years following implantation of a bioresorbable everolimus-eluting scaffold shows a statistically significant proximal edge LL; however, this finding did not seem to have any clinical implications in the serial assessment. The upcoming imaging follow-up of the Absorb BVS at three years is anticipated to provide further information regarding the vessel wall behaviour at the edges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To compare the precision of fit of full-arch implant-supported screw-retained computer-aided designed and computer-aided manufactured (CAD/CAM) titanium-fixed dental prostheses (FDP) before and after veneering. The null-hypothesis was that there is no difference in vertical microgap values between pure titanium frameworks and FDPs after porcelain firing. MATERIALS AND METHODS Five CAD/CAM titanium grade IV frameworks for a screw-retained 10-unit implant-supported reconstruction on six implants (FDI tooth positions 15, 13, 11, 21, 23, 25) were fabricated after digitizing the implant platforms and the cuspid-supporting framework resin pattern with a laser scanner (CARES(®) Scan CS2; Institut Straumann AG, Basel, Switzerland). A bonder, an opaquer, three layers of porcelain, and one layer of glaze were applied (Vita Titankeramik) and fired according to the manufacturer's preheating and fire cycle instructions at 400-800°C. The one-screw test (implant 25 screw-retained) was applied before and after veneering of the FDPs to assess the vertical microgap between implant and framework platform with a scanning electron microscope. The mean microgap was calculated from interproximal and buccal values. Statistical comparison was performed with non-parametric tests. RESULTS All vertical microgaps were clinically acceptable with values <90 μm. No statistically significant pairwise difference (P = 0.98) was observed between the relative effects of vertical microgap of unveneered (median 19 μm; 95% CI 13-35 μm) and veneered FDPs (20 μm; 13-31 μm), providing support for the null-hypothesis. Analysis within the groups showed significantly different values between the five implants of the FDPs before (P = 0.044) and after veneering (P = 0.020), while a monotonous trend of increasing values from implant 23 (closest position to screw-retained implant 25) to 15 (most distant implant) could not be observed (P = 0.169, P = 0.270). CONCLUSIONS Full-arch CAD/CAM titanium screw-retained frameworks have a high accuracy. Porcelain firing procedure had no impact on the precision of fit of the final FDPs. All implant microgap measurements of each FDP showed clinically acceptable vertical misfit values before and after veneering. Thus, the results do not only show accurate performance of the milling and firing but show also a reproducible scanning and designing process.