999 resultados para tissue optics
Resumo:
Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.
Resumo:
Five tartrate-amine complexes have been studied in terms of crystal packing and hydrogen bonding frameworks. The salts are 3-bromoanilinium-L-monohydrogen tartrate 1, 3-fluoroanilinium-D-dibenzoylmonohydrogen tartrate 2, 1-nonylium-D-dibenzoylmonohydrogen tartrate 3, 1 -decylium-D-dibenzoylmonohydrogen tartrate 4, and 1,4-diaminobutanium-D-dibenzoyl tartrate trihydrate 5. The results indicate that there are no halogen-halogen interactions in the haloaromatic-tartrate complexes. The anionic framework allows accomodation of ammonium ions that bear alkyl chain residues of variable lengths. The long chain amines in these structures remain disordered while the short chain amines form multidirectional hydrogen bonds on either side.
Resumo:
Crystal structures of six binary salts involving aromatic amines as cations and hydrogen tartrates as anions are presented. The materials are 2,6-xylidinium-L-monohydrogen tartrate monohydrate, C12H18O6.5N, P22(1)2(1), a = 7.283(2) Angstrom, b = 17.030(2) Angstrom, c = 22.196(2) Angstrom, Z = 8; 2,6-xylidinium-D-dibenzoyl monohydrogen tartrate, C26H25O8N, P2(1), a = 7.906(1) Angstrom, b = 24.757(1) Angstrom, c = 13.166(1) Angstrom, beta = 105.01(1)degrees, Z = 4; 2,3-xylidinium-D-dibenzoyl monohydrogen tartrate monohydrate, C26H26O8.5N, P2(1), a = 7.837(1) Angstrom, b = 24.488(1) Angstrom, c = 13.763(1) Angstrom, beta = 105.69(1)degrees, Z = 4; 2-toluidinium-D-dibenzoyl monohydrogen tartrate, C25H23O8N, P2(1)2(1)2(1), a = 13.553(2) Angstrom, b = 15.869(3) Angstrom, c = 22.123(2) Angstrom, Z = 8; 3-toluidinium-D-dibenzoyl monohydrogen tartrate (1:1), C25H23O8N, P1, a = 7.916(3) Angstrom, b = 11.467(6) Angstrom, c = 14.203(8) Angstrom, alpha = 96.44(4)degrees, beta = 98.20(5)degrees, = 110.55(5)degrees, Z = 2; 3-toluidinium-D-dibenzoyl tartrate dihydrate (1:2), C32H36O10N, P1, a = 7.828(3) Angstrom, b = 8.233(1) Angstrom, c = 24.888(8) Angstrom, alpha = 93.98 degrees, beta = 94.58(3)degrees, = 89.99(2)degrees, Z = 2. An analysis of the hydrogen-bonding schemes in terms of crystal packing, stoichiometric variations, and substitutional variations in these materials provides insights to design hydrogen-bonded networks directed toward the engineering of crystalline nonlinear optical materials.
Resumo:
Synthesis, crystal structures, linear and nonlinear optical properties of tris D-pi-A cryptand derivatives with C-3 symmetry are reported. Three fold symmetry inherent in the cryptand molecules has been utilized for designing these molecules. Molecular nonlinearities have been measured by hyper-Rayleigh scattering (HRS) experiments. Among the compounds studied, L-1 adopts non-centrosymmetric crystal structure. Compounds L-1, L-2, L-3 and L-4 show a measurable SHG powder signal. These molecules are more isotropic and have significantly higher melting points than the classical p-nitroaniline based dipolar NLO compounds, making them useful for further device applications. Besides, different acceptor groups can be attached to the cryptand molecules to modulate their NLO properties.
Resumo:
Scattering of coherent light from scattering particles causes phase shift to the scattered light. The interference of unscattered and scattered light causes the formation of speckles. When the scattering particles, under the influence of an ultrasound (US) pressure wave, vibrate, the phase shift fluctuates, thereby causing fluctuation in speckle intensity. We use the laser speckle contrast analysis (LSCA) to reconstruct a map of the elastic property (Young's modulus) of soft tissue-mimicking phantom. The displacement of the scatters is inversely related to the Young's modulus of the medium. The elastic properties of soft biological tissues vary, many fold with malignancy. The experimental results show that laser speckle contrast (LSC) is very sensitive to the pathological changes in a soft tissue medium. The experiments are carried out on a phantom with two cylindrical inclusions of sizes 6 mm in diameter, separated by 8 mm between them. Three samples are made. One inclusion has Young's modulus E of 40 kPa. The second inclusion has either a Young's modulus E of 20 kPa, or scattering coefficient of mu'(s), = 3.00 mm(-1) or absorption coefficient of mu(a) = 0.03 mm(-1). The optical absorption (mu(a)), reduced scattering (mu'(s)) coefficient, and the Young's modulus of the background are mu(a) = 0.01 mm(-1), mu'(s) = 1.00 mm(-1) and 12kPa, respectively. The experiments are carried out on all three phantoms. On a phantom with two inclusions of Young's modulus of 20 and 40 kPa, the measured relative speckle image contrasts are 36.55% and 63.72%, respectively. Experiments are repeated on phantoms with inclusions of mu(a) = 0.03 mm-1, E = 40 kPa and mu'(s) = 3.00 mm(-1). The results show that it is possible to detect inclusions with contrasts in optical absorption, optical scattering, and Young's modulus. Studies of the variation of laser speckle contrast with ultrasound driving force for various values of mu(a), mu'(s), and Young's modulus of the tissue mimicking medium are also carried out. (C) 2011 American Institute of Physics. doi:10.1063/1.3592352]
Resumo:
Two new classes of mono- and bis-D-pi-A cryptand derivatives with a flexible and a rigid cryptand core have been synthesized. The linear and nonlinear optical properties of these molecules are probed. The three dimensional cavity of the cryptand moiety has been utilized to modulate the SHG intensity to different extents in solution with metal ion inputs such as Ni-II,Cu-II,Zn-II, and Cd-II. We also report that decomplexation events can be used to reversibly modulate their NLO responses.
Resumo:
Several unsymmetrically substituted aromatic donor acceptor disulfides have been synthesized and analysed for their second order nonlinear optical properties. These molecules exhibit moderately high first hyperpolarizability (beta) with excellent transparency in the visible region. Most of the unsymmetrical disulfides have a cut-off wavelength below 420 nm. Calculations show that the molecules have an asymmetric charge distribution around the disulfide bond which is responsible for their high beta values. These results provide motivation for the design and synthesis of nonlinear optical chromophores with multiple disulfide bonds for large second order nonlinearity and excellent visible transparency.
Resumo:
The objective of the present in vitro research was to investigate cardiac tissue cell functions (specifically cardiomyocytes and neurons) on poly(lactic-co-glycolic acid) (PLGA) (50:50 wt.%)-carbon nanofiber (CNF) composites to ascertain their potential for myocardial tissue engineering applications. CNF were added to biodegradable PLGA to increase the conductivity and cytocompatibility of pure PLGA. For this reason, different PLGA:CNF ratios (100:0, 75:25, 50:50,25:75, and 0:100 wt.%) were used and the conductivity as well as cytocompatibility of cardiomyocytes and neurons were assessed. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy analysis characterized the microstructure, chemistry, and crystallinity of the materials of interest to this study. The results show that PLGA:CNF materials are conductive and that the conductivity increases as greater amounts of CNF are added to PLGA, from OS m(-1) for pure PLGA (100:0 wt.%) to 5.5 x 10(-3) S m(-1) for pure CNF (0:100 wt.%). The results also indicate that cardiomyocyte density increases with greater amounts of CNF in PLGA (up to 25:75 wt.% PLGA:CNF) for up to 5 days. For neurons a similar trend to cardiomyocytes was observed, indicating that these conductive materials promoted the adhesion and proliferation of two cell types important for myocardial tissue engineering applications. This study thus provides, for the first time, an alternative conductive scaffold using nanotechnology which should be further explored for cardiovascular applications. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Cardiac arrhythmias such as ventricular tachycardia (VT) or ventricular fibrillation (VF) are the leading cause of death in the industrialised world. There is a growing consensus that these arrhythmias arise because of the formation of spiral waves of electrical activation in cardiac tissue; unbroken spiral waves are associated with VT and broken ones with VF. Several experimental studies have been carried out to determine the effects of inhomogeneities in cardiac tissue on such arrhythmias. We give a brief overview of such experiments, and then an introduction to partial-differential-equation models for ventricular tissue. We show how different types of inhomogeneities can be included in such models, and then discuss various numerical studies, including our own, of the effects of these inhomogeneities on spiral-wave dynamics. The most remarkable qualitative conclusion of our studies is that the spiral-wave dynamics in such systems depends very sensitively on the positions of these inhomogeneities.
Resumo:
We demonstrate a method to recover the Young's modulus (E) of a tissue-mimicking phantom from measurements of ultrasound modulated optical tomography (UMOT). The object is insonified by a dualbeam, confocal ultrasound transducer (US) oscillating at frequencies f(0) and f(0) + Delta f and the variation of modulation depth (M) in the autocorrelation of light traversed through the focal region of the US transducer against Delta f is measured. From the dominant peaks observed in the above variation, the natural frequencies of the insonified region associated with the vibration along the US transducer axis are deduced. A consequence of the above resonance is that the speckle fluctuation at the resonance frequency has a higher signal-to-noise to ratio (SNR). From these natural frequencies and the associated eigenspectrum of the oscillating object, Young's modulus (E) of the material in the focal region is recovered. The working of this method is confirmed by recovering E in the case of three tissue-mimicking phantoms of different elastic modulus values. (C) 2011 Optical Society of America
Resumo:
We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R(1,1) perturbatively to linear order in the noncommutativity theta. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a `squeezed' state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics.