916 resultados para thin-layer chromatography
Resumo:
Based on scanning tunnelling microscopy and electrochemical measurements, orientation and electrocatalytic function of riboflavin adsorbed on carbon substrates have been described for the first time. Scanning tunnelling micrographs show clearly that tip induction may result in an orientation change of the adsorbed riboflavin molecule on highly oriented pyrolytic graphite from the initially vertical orientation to the stable flat form. The adsorbed riboflavin as an effective mediator can accelerate the reduction of dioxygen which accepts two electrons from the reduced riboflavin to generate hydrogen peroxide. The rate constants of the electrocatalytic reaction in various pH solutions were determined using a rotating disc electrode modified with riboflavin. The pH effect and possible catalytic mechanism are discussed in detail.
Resumo:
The electrochemical reduction behavior of bilirubin (BR) at platinum electrode in DMF was investigated by cyclic voltammetry, in situ electron spin resonance spectroscopy and in situ rapid scanning thin layer spectroelectrochemistry. Experimental results revealed that the reduction of BR firstly undergoes an ECE process: GRAPHICS The generated (BR)(2)(3-). can be re-oxidized to BR and then to purpurin (Pu) by a series of oxidation processes: GRAPHICS However, the re-reduction reactions of Pu are not the reverse processes. The different reduction mechanisms are discussed in detail.
Resumo:
The electro-oxidation of bilirubin (BR) in aqueous solution was investigated by cyclic voltammetry and in-situ thin-layer spectroelectrochemical techniques, It was found that both oxidation processes of BR are two electron transfer reactions. A mechanism
Resumo:
The electrooxidation behavior of bilirubin (BR), biliverdin (BV), purpurin (Pu), and choletelin (Ch in dimethylformamide (DMF) have been investigated bv voltammetry, in situ electron spin resonance (ESR) thin-layer spectroelectrochemistry and especially i
Resumo:
Electrochemical catalytic reactions of tetraphenylporphinatocobalt were studied in DMF and EtCl2 solutions in the presence of 1,2-dibromoethane and 1, 2-dichloroethane utilizing cyclic voltammetry, thin-layer electrochemistry, in situ UV-visible spectroel
Resumo:
In the presence of OH- anions, electrochemical redox reactions of cobalt tetraphenylporphyrin (TPP)Co were investigated in EtCl2 solution by thin-layer cyclic voltammetry and spectroelectrochemistry. In the pressence of OH-, OH- was axially coordinated to
Resumo:
An investigation of electrode oxidation processes of (tetra-phenylporphinato) manganese (III) Perchlorate, (TPS)Mn(III)ClO4, was carried out during the titration of chloride anions by conventional cyclic voltammetry, thin-layer cyclic voltammetry and spectroelectrochemistry. It was demonstrated that in the presence of one equivalent amount of Cl-, the first one electron oxidation reaction corresponds to the Mn(III)I cation radical oxidation, and the second one electron oxidation corresponds to the cation radical/dication generation followed by an iso-porphyrin formation reaction, however in the presence of two equivalent amount of Cl-, the first one electron oxidation of Mn(III) gives Mn(IV) porphyrin and the second one electron oxidation generates cation radicals of Mn(IV) followed by an iso-porphyrin formation reactions. Mechanisms of these redox processes are postulated.
Resumo:
The electrochemical redox processes of tryptophan were studied by in situ circular dichroic (CD) spectroelectrochemistry with a long optical path length thin-layer cell. The oxidation of tryptophan at low concentrations in basic aqueous solution is a two-electron irreversible electrochemical process which results from an irreversible subsequent chemical reaction. A method of treatment of CD spectral data for the irreversible electrochemical reaction is suggested, from which the values E(p/2) = 0.46 V, alphan(alpha) = 0.313 and k0 = 2.4 x 10(-4) cm s-1 (the standard heterogeneous reaction rate constant for tryptophan oxidation) were obtained.
Resumo:
The rapid scan spectrometer was used to determine the heterogeneous electron transfer rate parameters for the oxidation of Biliverdin in DMF by single potential step thin layer spectroelectrochemical techniques and yielded an average formal heterogeneous electron transfer rate constant K(s, h)0' = 2.45 (+/-0.12) x 10(-4) cm s-1, electrochemical transfer coefficient alpha = 0.694+/-0.008. The oxidation process of Biliverdin was also studied and the formal potential E0 = 0.637 V (vs. Ag/AgCl) was obtained.
Resumo:
The electrochemical reduction of bilirubin (BR) in dimethyl formamide (DMF) is discussed in detail. The kinetic study of the electroreduction process of BR results in values of 7.94 x 10(-6) cm2/s for the diffusion coefficient and about 10(-3) cm/s for the standard heterogeneous electrode reaction rate constant. Thin-layer spectroelectrochemical investigations of BR exhibit a blue shift and a red shift at E(pc) = -0.6 V and E(pc) = -0.85 V respectively. They also give values of E0' = -1.55 V and n = 1 for the reduction process, and E0' = -1.35 V and n = 1 for the oxidation process. It was found experimentally that as the potential changes from negative to positive, the sequential color changes are similar to those of some of the color components in visible light. A mechanism for BR electroreduction in DMF has been proposed.
Resumo:
The heterogeneous electron transfer reaction of hemeproteins including hemoglobin, myoglobin and cytochrome C at Pt mesh electrode adsorbed methylene blue has been investigated. Thin-layer spectroelectrochemical technique was used for observing the electron transfer processes of three kinds of proteins, and the corresponding electrode rate constants were measured.
Resumo:
The electrochemical behavior of myoglobin at a Brilliant Cresyl Blue (BCB) modified platinum gauze electrode and spiral pt wire in the BCB solution in optically transparent thin layer cell base been investigated by using cyclic potential-absorbance method and double potential step chronoabsorptometry. The results reveal a reversible electron transfer resection of myoglobin. Exhaustive reductive and oxidative electrolyses are achieved at the modified platinum surface in 20 and 100s respectively. The formal h...
Resumo:
The rate constant of very fast chemical reaction generally can be measured by electrochemical methods, but can not by the thin layer electrochemical methods because of the influence of diffusion effect. Long optical path length thin layer cell (LOPTLC) with large ratio of electrode area to solution volume can be used to monitor the fist chemical reaction in situ with high sensitivity and accuracy. It enable the adsorption spectra to be measured without the influence of diffusion effect. In the present paper, a fast chemical reaction of Alizarin Red S (ARS) with its oxidative state has been studied. The reaction equilibrium constant (K) under different potentials can be determined by single step potential-absorption spectra in LOPTLC. An equilibrium constant of 7.94 x 10(5) l.mol(-1) for the chemical reaction has been obtained from the plot of lgK vs. (E - E-1(0)'). Rate constant (k) under different potentials can be measured by single step potential-chronoabsorptiometry. A rate constant of 426.6 l.mol(-1).s(-1) for the chemical reaction has been obtained from the plot of lgK vs. (E - E-1(0)') with (E - E-1(0)') = 0.
Resumo:
The construction of the shuttle, expression vector of human tumor necrosis factor alpha (hTNF-alpha) gene and its expression in a cyanobacterium Anabaena sp. PCC 7120 was reported. The 700-bp hTNF cDNA fragments have been recovered from plasmid pRL-rhTNF, then inserted downstream of the promoter PpsbA in the plasmid pRL439. The resultant intermediary plasmid pRL-TC has further been combined with the shuttle vector pDC-8 to get the shuttle, expression vector pDC-TNF. The expression of the rhTNF gene in Escherichia coil has been analyzed by SDS-PAGE and thin-layer scanning, and the results show that the expressed TNF protein with these two vectors is 16.9 percent (pRL-TC) and 15.0 percent (pDC-TNF) of the total proteins in the cells, respectively, while the expression level of TNF gene in plasmid pRL-rhTNF is only 11.8 percent. Combined with the participation of the conjugal and helper plasmids, pDC-TNF has been introduced into Anabaena sg PCC 7120 by triparental conjugative transfer, and the stable transgenic strains have been obtained. The existence of the introduced plasmid pDC-TNF in recombinant cyanobacterial cells has been demonstrated by the results of the agarose electrophoresis with the extracted plasmid samples and Southern blotting with alpha-(32)p labeled hTNF cDNA probes, while the expression of the hTNF gene in Anabaena sp. PCC 7120 has been confirmed by the results of Western blotting with extracted protein samples and human TNF-alpha monoclonal antibodies. The cytotoxicity assays using the mouse cancer cell line L929 proved the cytotoxicity of the TNF in the crude extracts from the transgenic cyanobacterium Anabaena sp. PCC 7120.