963 resultados para synthetic small diameter vascular graft
Resumo:
A simple and scalable chemical approach has been proposed for the generation of 1-dimensional nanostructures of two most important inorganic materials such as zinc oxide and cadmium sulfide. By controlling the growth habit of the nanostructures with manipulated reaction conditions, the diameter and uniformity of the nanowires/nanorods were tailored. We studied extensively optical behavior and structural growth of CdS NWs and ZnO NRs doped ferroelectric liquid crystal Felix-017/100. Due to doping band gap has been changed and several blue shifts occurred in photoluminescence spectra because of nanoconfinement effect and mobility of charges.
Resumo:
La tomografía axial computerizada (TAC) es la modalidad de imagen médica preferente para el estudio de enfermedades pulmonares y el análisis de su vasculatura. La segmentación general de vasos en pulmón ha sido abordada en profundidad a lo largo de los últimos años por la comunidad científica que trabaja en el campo de procesamiento de imagen; sin embargo, la diferenciación entre irrigaciones arterial y venosa es aún un problema abierto. De hecho, la separación automática de arterias y venas está considerado como uno de los grandes retos futuros del procesamiento de imágenes biomédicas. La segmentación arteria-vena (AV) permitiría el estudio de ambas irrigaciones por separado, lo cual tendría importantes consecuencias en diferentes escenarios médicos y múltiples enfermedades pulmonares o estados patológicos. Características como la densidad, geometría, topología y tamaño de los vasos sanguíneos podrían ser analizados en enfermedades que conllevan remodelación de la vasculatura pulmonar, haciendo incluso posible el descubrimiento de nuevos biomarcadores específicos que aún hoy en dípermanecen ocultos. Esta diferenciación entre arterias y venas también podría ayudar a la mejora y el desarrollo de métodos de procesamiento de las distintas estructuras pulmonares. Sin embargo, el estudio del efecto de las enfermedades en los árboles arterial y venoso ha sido inviable hasta ahora a pesar de su indudable utilidad. La extrema complejidad de los árboles vasculares del pulmón hace inabordable una separación manual de ambas estructuras en un tiempo realista, fomentando aún más la necesidad de diseñar herramientas automáticas o semiautomáticas para tal objetivo. Pero la ausencia de casos correctamente segmentados y etiquetados conlleva múltiples limitaciones en el desarrollo de sistemas de separación AV, en los cuales son necesarias imágenes de referencia tanto para entrenar como para validar los algoritmos. Por ello, el diseño de imágenes sintéticas de TAC pulmonar podría superar estas dificultades ofreciendo la posibilidad de acceso a una base de datos de casos pseudoreales bajo un entorno restringido y controlado donde cada parte de la imagen (incluyendo arterias y venas) está unívocamente diferenciada. En esta Tesis Doctoral abordamos ambos problemas, los cuales están fuertemente interrelacionados. Primero se describe el diseño de una estrategia para generar, automáticamente, fantomas computacionales de TAC de pulmón en humanos. Partiendo de conocimientos a priori, tanto biológicos como de características de imagen de CT, acerca de la topología y relación entre las distintas estructuras pulmonares, el sistema desarrollado es capaz de generar vías aéreas, arterias y venas pulmonares sintéticas usando métodos de crecimiento iterativo, que posteriormente se unen para formar un pulmón simulado con características realistas. Estos casos sintéticos, junto a imágenes reales de TAC sin contraste, han sido usados en el desarrollo de un método completamente automático de segmentación/separación AV. La estrategia comprende una primera extracción genérica de vasos pulmonares usando partículas espacio-escala, y una posterior clasificación AV de tales partículas mediante el uso de Graph-Cuts (GC) basados en la similitud con arteria o vena (obtenida con algoritmos de aprendizaje automático) y la inclusión de información de conectividad entre partículas. La validación de los fantomas pulmonares se ha llevado a cabo mediante inspección visual y medidas cuantitativas relacionadas con las distribuciones de intensidad, dispersión de estructuras y relación entre arterias y vías aéreas, los cuales muestran una buena correspondencia entre los pulmones reales y los generados sintéticamente. La evaluación del algoritmo de segmentación AV está basada en distintas estrategias de comprobación de la exactitud en la clasificación de vasos, las cuales revelan una adecuada diferenciación entre arterias y venas tanto en los casos reales como en los sintéticos, abriendo así un amplio abanico de posibilidades en el estudio clínico de enfermedades cardiopulmonares y en el desarrollo de metodologías y nuevos algoritmos para el análisis de imágenes pulmonares. ABSTRACT Computed tomography (CT) is the reference image modality for the study of lung diseases and pulmonary vasculature. Lung vessel segmentation has been widely explored by the biomedical image processing community, however, differentiation of arterial from venous irrigations is still an open problem. Indeed, automatic separation of arterial and venous trees has been considered during last years as one of the main future challenges in the field. Artery-Vein (AV) segmentation would be useful in different medical scenarios and multiple pulmonary diseases or pathological states, allowing the study of arterial and venous irrigations separately. Features such as density, geometry, topology and size of vessels could be analyzed in diseases that imply vasculature remodeling, making even possible the discovery of new specific biomarkers that remain hidden nowadays. Differentiation between arteries and veins could also enhance or improve methods processing pulmonary structures. Nevertheless, AV segmentation has been unfeasible until now in clinical routine despite its objective usefulness. The huge complexity of pulmonary vascular trees makes a manual segmentation of both structures unfeasible in realistic time, encouraging the design of automatic or semiautomatic tools to perform the task. However, this lack of proper labeled cases seriously limits in the development of AV segmentation systems, where reference standards are necessary in both algorithm training and validation stages. For that reason, the design of synthetic CT images of the lung could overcome these difficulties by providing a database of pseudorealistic cases in a constrained and controlled scenario where each part of the image (including arteries and veins) is differentiated unequivocally. In this Ph.D. Thesis we address both interrelated problems. First, the design of a complete framework to automatically generate computational CT phantoms of the human lung is described. Starting from biological and imagebased knowledge about the topology and relationships between structures, the system is able to generate synthetic pulmonary arteries, veins, and airways using iterative growth methods that can be merged into a final simulated lung with realistic features. These synthetic cases, together with labeled real CT datasets, have been used as reference for the development of a fully automatic pulmonary AV segmentation/separation method. The approach comprises a vessel extraction stage using scale-space particles and their posterior artery-vein classification using Graph-Cuts (GC) based on arterial/venous similarity scores obtained with a Machine Learning (ML) pre-classification step and particle connectivity information. Validation of pulmonary phantoms from visual examination and quantitative measurements of intensity distributions, dispersion of structures and relationships between pulmonary air and blood flow systems, show good correspondence between real and synthetic lungs. The evaluation of the Artery-Vein (AV) segmentation algorithm, based on different strategies to assess the accuracy of vessel particles classification, reveal accurate differentiation between arteries and vein in both real and synthetic cases that open a huge range of possibilities in the clinical study of cardiopulmonary diseases and the development of methodological approaches for the analysis of pulmonary images.
Resumo:
The stability limit of minimum volume and the breaking dynamics of liquid bridges between nonequal, noncoaxial, circular supporting disks subject to a lateral acceleration were experimentally analyzed by working with liquid bridges of very small dimensions. Experimental results are compared with asymptotic theoretical predictions, with the agreement between experimental results and asymptotic ones being satisfactory
Resumo:
Five synthetic combinatorial libraries of 2,080 components each were screened as mixtures for inhibition of DNA binding to two transcription factors. Rapid, solution-phase synthesis coupled to a gel-shift assay led to the identification of two compounds active at a 5- to 10-μM concentration level. The likely mode of inhibition is intercalation between DNA base pairs. The efficient deconvolution through sublibrary synthesis augurs well for the use of large mixtures of small, nonpeptide molecules in biological screens.
Resumo:
Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole–imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located within RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.
Resumo:
Small ligand–receptor interactions underlie many fundamental processes in biology and form the basis for pharmacological intervention of human diseases in medicine. We report herein a genetic system, named the yeast three-hybrid system, for detecting ligand–receptor interactions in vivo. This system is adapted from the yeast two-hybrid system with which a third synthetic hybrid ligand is combined. The feasibility of this system was demonstrated using as the hybrid ligand a heterodimer of covalently linked dexamethasone and FK506. Yeast expressing fusion proteins of the hormone binding domain of the rat glucocorticoid receptor fused to the LexA DNA-binding domain and of FKBP12 fused to a transcriptional activation domain activated reporter genes when plated on medium containing the dexamethasone–FK506 heterodimer. The reporter gene activation is completely abrogated in a competitive manner by the presence of excess FK506. Using this system, we screened a Jurkat cDNA library fused to the transcriptional activation domain in yeast expressing the hormone binding domain of rat glucocorticoid receptor–LexA DNA binding domain fusion protein in the presence of dexamethasone–FK506 heterodimer. We isolated overlapping clones of human FKBP12. These results demonstrate that the three-hybrid system can be used to discover receptors for small ligands and to screen for new ligands to known receptors.
Resumo:
The electron density map of the small ribosomal subunit from Thermus thermophilus, constructed at 4.5 Å resolution, shows the recognizable morphology of this particle, as well as structural features that were interpreted as ribosomal RNA and proteins. Unbiased assignments, carried out by quantitative covalent binding of heavy atom compounds at predetermined sites, led to the localization of the surface of the ribosomal protein S13 at a position compatible with previous assignments, whereas the surface of S11 was localized at a distance of about twice its diameter from the site suggested for its center by neutron scattering. Proteins S5 and S7, whose structures have been determined crystallographically, were visually placed in the map with no alterations in their conformations. Regions suitable to host the fold of protein S15 were detected in several positions, all at a significant distance from the location of this protein in the neutron scattering map. Targeting the 16S RNA region, where mRNA docks to allow the formation of the initiation complex by a mercurated mRNA analog, led to the characterization of its vicinity.
Resumo:
The overall folded (global) structure of mRNA may be critical to translation and turnover control mechanisms, but it has received little experimental attention. Presented here is a comparative analysis of the basic features of the global secondary structure of a synthetic mRNA and the same intracellular eukaryotic mRNA by dimethyl sulfate (DMS) structure probing. Synthetic MFA2 mRNA of Saccharomyces cerevisiae first was examined by using both enzymes and chemical reagents to determine single-stranded and hybridized regions; RNAs with and without a poly(A) tail were compared. A folding pattern was obtained with the aid of the mfold program package that identified the model that best satisfied the probing data. A long-range structural interaction involving the 5′ and 3′ untranslated regions and causing a juxtaposition of the ends of the RNA, was examined further by a useful technique involving oligo(dT)-cellulose chromatography and antisense oligonucleotides. DMS chemical probing of A and C nucleotides of intracellular MFA2 mRNA was then done. The modification data support a very similar intracellular structure. When low reactivity of A and C residues is found in the synthetic RNA, ≈70% of the same sites are relatively more resistant to DMS modification in vivo. A slightly higher sensitivity to DMS is found in vivo for some of the A and C nucleotides predicted to be hybridized from the synthetic structural model. With this small mRNA, the translation process and mRNA-binding proteins do not block DMS modifications, and all A and C nucleotides are modified the same or more strongly than with the synthetic RNA.
Resumo:
Design of hydroxyproline (Hyp)-rich glycoproteins (HRGPs) offers an approach for the structural and functional analysis of these wall components, which are broadly implicated in plant growth and development. HRGPs consist of multiple small repetitive “glycomodules” extensively O-glycosylated through the Hyp residues. The patterns of Hyp-O-glycosylation are putatively coded by the primary sequence as described by the Hyp contiguity hypothesis, which predicts contiguous Hyp residues to be attachment sites of small arabinooligosaccharides (1–5 Ara residues/Hyp); while clustered, noncontiguous Hyp residues are sites of arabinogalactan polysaccharide attachment. As a test, we designed two simple HRGPs as fusion proteins with green fluorescent protein. The first was a repetitive Ser-Hyp motif that encoded only clustered noncontiguous Hyp residues, predicted polysaccharide addition sites. The resulting glycoprotein had arabinogalactan polysaccharide O-linked to all Hyp residues. The second construct, based on the consensus sequence of a gum arabic HRGP, contained both arabinogalactan and arabinooligosaccharide addition sites and, as predicted, gave a product that contained both saccharide types. These results identify an O-glycosylation code of plants.
Resumo:
Coiled bodies (CBs) in the amphibian oocyte nucleus are spherical structures up to 10 μm or more in diameter, much larger than their somatic counterparts, which rarely exceed 1 μm. Oocyte CBs may have smaller granules attached to their surface or embedded within them, which are identical in structure and composition to the many hundreds of B-snurposomes found free in the nucleoplasm. The matrix of the CBs contains the diagnostic protein p80-coilin, which is colocalized with the U7 small nuclear ribonucleoprotein (snRNP), whereas the attached and embedded B-snurposomes contain splicing snRNPs. A few of the 50–100 CBs in the oocyte nucleus are attached to lampbrush chromosomes at the histone gene loci. By coimmunoprecipitation we show that coilin and the U7 snRNP can form a weak but specific complex in the nucleoplasm, which is dependent on the special U7 Sm-binding site. Under the same conditions coilin does not associate with the U1 and U2 snRNPs. Coilin is a nucleic acid-binding protein, as shown by its interaction with single-stranded DNA and with poly r(U) and poly r(G). We suggest that an important function of coilin is to form a transient complex with the U7 snRNP and accompany it to the CBs. In the case of CBs attached to chromosomes at the histone gene loci, the U7 snRNP is thus brought close to the actual site of histone pre-mRNA transcription.
Resumo:
The hyperpermeability of tumor vessels to macromolecules, compared with normal vessels, is presumably due to vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) released by neoplastic and/or host cells. In addition, VEGF/VPF is a potent angiogenic factor. Removal of this growth factor may reduce the permeability and inhibit tumor angiogenesis. To test these hypotheses, we transplanted a human glioblastoma (U87), a human colon adenocarcinoma (LS174T), and a human melanoma (P-MEL) into two locations in immunodeficient mice: the cranial window and the dorsal skinfold chamber. The mice bearing vascularized tumors were treated with a bolus (0.2 ml) of either a neutralizing antibody (A4.6.1) (492 μg/ml) against VEGF/VPF or PBS (control). We found that tumor vascular permeability to albumin in antibody-treated groups was lower than in the matched controls and that the effect of the antibody was time-dependent and influenced by the mode of injection. Tumor vascular permeability did not respond to i.p. injection of the antibody until 4 days posttreatment. However, the permeability was reduced within 6 h after i.v. injection of the same amount of antibody. In addition to the reduction in vascular permeability, the tumor vessels became smaller in diameter and less tortuous after antibody injections and eventually disappeared from the surface after four consecutive treatments in U87 tumors. These results demonstrate that tumor vascular permeability can be reduced by neutralization of endogenous VEGF/VPF and suggest that angiogenesis and the maintenance of integrity of tumor vessels require the presence of VEGF/VPF in the tissue microenvironment. The latter finding reveals a new mechanism of tumor vessel regression—i.e., blocking the interactions between VEGF/VPF and endothelial cells or inhibiting VEGF/VPF synthesis in solid tumors causes dramatic reduction in vessel diameter, which may block the passage of blood elements and thus lead to vascular regression.
Resumo:
The sequence of events that leads to tumor vessel regression and the functional characteristics of these vessels during hormone–ablation therapy are not known. This is because of the lack of an appropriate animal model and monitoring technology. By using in vivo microscopy and in situ molecular analysis of the androgen-dependent Shionogi carcinoma grown in severe combined immunodeficient mice, we show that castration of these mice leads to tumor regression and a concomitant decrease in vascular endothelial growth factor (VEGF) expression. Androgen withdrawal is known to induce apoptosis in Shionogi tumor cells. Surprisingly, tumor endothelial cells begin to undergo apoptosis before neoplastic cells, and rarefaction of tumor vessels precedes the decrease in tumor size. The regressing vessels begin to exhibit normal phenotype, i.e., lower diameter, tortuosity, vascular permeability, and leukocyte adhesion. Two weeks after castration, a second wave of angiogenesis and tumor growth begins with a concomitant increase in VEGF expression. Because human tumors often relapse following hormone–ablation therapy, our data suggest that these patients may benefit from combined anti-VEGF therapy.
Resumo:
von Hippel–Lindau (VHL) disease is a pleomorphic familial tumor syndrome that is characterized by the development of highly vascularized tumors. Homozygous disruption of the VHL gene in mice results in embryonic lethality. To investigate VHL function in the adult we have generated a conditional VHL null allele (2-lox allele) and null allele (1-lox allele) by Cre-mediated recombination in embryonic stem cells. We show here that mice heterozygous for the 1-lox allele develop cavernous hemangiomas of the liver, a rare manifestation of the human disease. Histologically these tumors were associated with hepatocellular steatosis and focal proliferations of small vessels. To study the cellular origin of these lesions we inactivated VHL tissue-specifically in hepatocytes. Deletion of VHL in the liver resulted in severe steatosis, many blood-filled vascular cavities, and foci of increased vascularization within the hepatic parenchyma. These histopathological changes were similar to those seen in livers from mice heterozygous for the 1-lox allele. Hypoxia-inducible mRNAs encoding vascular endothelial growth factor, glucose transporter 1, and erythropoietin were up-regulated. We thus provide evidence that targeted inactivation of mouse VHL can model clinical features of the human disease and underline the importance of the VHL gene product in the regulation of hypoxia-responsive genes in vivo.
Resumo:
Nitric oxide (NO) plays a critical role in vascular endothelial growth factor (VEGF)-induced angiogenesis and vascular hyperpermeability. However, the relative contribution of different NO synthase (NOS) isoforms to these processes is not known. Here, we evaluated the relative contributions of endothelial and inducible NOS (eNOS and iNOS, respectively) to angiogenesis and permeability of VEGF-induced angiogenic vessels. The contribution of eNOS was assessed by using an eNOS-deficient mouse, and iNOS contribution was assessed by using a selective inhibitor [l-N6-(1-iminoethyl) lysine, l-NIL] and an iNOS-deficient mouse. Angiogenesis was induced by VEGF in type I collagen gels placed in the mouse cranial window. Angiogenesis, vessel diameter, blood flow rate, and vascular permeability were proportional to NO levels measured with microelectrodes: Wild-type (WT) ≥ WT with l-NIL or iNOS−/− > eNOS−/− ≥ eNOS−/− with l-NIL. The role of NOS in VEGF-induced acute vascular permeability increase in quiescent vessels also was determined by using eNOS- and iNOS-deficient mice. VEGF superfusion significantly increased permeability in both WT and iNOS−/− mice but not in eNOS−/− mice. These findings suggest that eNOS plays a predominant role in VEGF-induced angiogenesis and vascular permeability. Thus, selective modulation of eNOS activity is a promising strategy for altering angiogenesis and vascular permeability in vivo.
Resumo:
Notch proteins function as receptors for membrane-bound ligands (Jagged and Delta-like) to regulate cell-fate determination. We have investigated the role of Notch signaling in embryonic endothelium of the mouse by expressing an activated form of the Notch4 protein in vasculature under the regulation of the Flk1 (VEGFR) locus. Expression of activated Notch4 results in a growth and developmental delay and embryonic lethality at about 10 days postcoitum. The extent of the developing vasculature in mutant embryos was restricted, fewer small vessels were seen, and vascular networks were disorganized. The brain periphery of mutant embryos contained large dilated vessels with evidence of compromised vessel-wall integrity and large areas of necrosis; yolk-sac vasculature was abnormal. Expression of an activated form of Notch4 in embryonic vasculature leads to abnormal vessel structure and patterning, implicating the Notch pathway in phases of vascular development associated with vessel patterning and remodeling.