960 resultados para sustainable buildings
Resumo:
This report provides an overview of findings of qualitative research comprising three case studies undertaken as a part of the retrospective analysis component of Sustainable Built Environment National Research Centre (SBEnrc) Project 2.7 Leveraging R&D investment for the Australian Built Environment. These case studies (see Parts 2, 3 and 4 of this suite of reports) were undertaken to illustrate the nature of past R&D investments in Australia. This was done to complement: (i) the audit and analysis of past R&D investment undertaken by Thomas Barlow (2011); and (ii) the Construction 2030 roadmap being developed by Swinburne University of Technology and Professor Göran Roos from VTT Technical Research Centre of Finland. These documents will be the basis for the final phase of the present project - developing policy guidelines for future R&D investment in the Australian built environment. Refer also Parts 1, 2 and 3 for detail findings.
Resumo:
Having IT-related capabilities is not enough to secure value from the IT resources and survive in today’s competitive environment. IT resources evolve dynamically and organisations must sustain their existing capabilities to continue to leverage value from their IT resources. Organisations’ IT-related management capabilities are an important source of their competitive advantage. We suggest that organisations can sustain these capabilities through appropriate considerations of resources at the technology-use level. This study suggests that an appropriate organisational design relating to decision rights and work environment, and a congruent reward system can create a dynamic IT-usage environment. This environment will be a vital source of knowledge that could help organisations to sustain their IT-related management capabilities. Analysis of data collected from a field survey demonstrates that this dynamic IT-usage environment, a result of the synergy between complementary factors, helps organisations to sustain their IT-related management capabilities. This study adds an important dimension to understanding why some organisations continue to perform better with their IT resources than others. For practice, this study suggests that organisations need to consider a comprehensive approach to what constitutes their valuable resources.
Resumo:
Having IT-related capabilities is not enough to secure value from IT resources and survive in today’s competitive environment. IT resources evolve dynamically and firms must sustain their existing capabilities to continue to leverage value from their IT resources. Firm’s human resources are an important IT-related capability, and an important source of their competitive advantage. Using a field survey, this study demonstrates that a dynamic end-user environment, a result of a coordinated change in complementary factors can help sustain firms’ IT-related management capabilities. These factors include an appropriate organizational design to decision rights and work environment and a congruent reward system. This study adds an important dimension in understanding why some firms continue to perform better with their IT resources than others. For practice, this study suggests that a comprehensive approach to what constitutes valuable organizational resources is necessary.
Resumo:
Research has established that firms' IT-related capabilities at a point in time explain IT-related performance differences across firms. IT resources, however, are dynamic, and evolve at an exponential rate. This means we need to understand how to sustain firms' existing capabilities to leverage opportunities offered by new IT resources. Wet suggests a higher-level resource that can sustain firms' existing IT-related capabilities. Second, we report on the development of a valid and reliable measurement instrument for measuring this higher-level resource in four stages, which includes expert feedback and a field test. The validated instrument would be useful in extending the IT business value studies to investigate how firms can sustain their IT-related capabilities. This effort will provide a deeper understanding of how firms can secure sustainable IT-related business value from their acquired IT resources.
Resumo:
Retrofit projects are different from newly-built projects in many respects. A retrofit project involves an existing building, which imposes constraints on the owners, designers, operators and constructors throughout the project process. Retrofit projects are risky, complex, less predictable and difficult to be well planned, which need greater coordination. For office building retrofit project, further restrictions will apply as these buildings often locate in CBD areas and most have to remain operational during the progression of project work. Issues such as site space, material storage and handling, noise and dust, need to be considered and well addressed. In this context, waste management is even more challenging with small spaces for waste handling, uncertainties in waste control, and impact of waste management activities on project delivery and building occupants. Current literatures on waste management in office building retrofit projects focus on increasing waste recovery rate based on project planning, monitoring and stakeholders’ collaboration. However, previous research has not produced knowledge of understanding the particular retrofit processes and their impact on waste generation and management. This paper discusses the interim results of a continuing research on new strategies for waste management in office building retrofit projects. Firstly based on the literature review, it summarizes the unique characteristics of office building retrofit projects and their influence on waste management. An assumption on waste management strategies is formed. Semi-structured interviews were conducted towards industry practitioners and findings are then presented in the paper. The assumption of the research was validated in the interviews from the opinions and experiences of the respondents. Finally the research develops a process model for waste management in office building retrofit projects. It introduces two different waste management strategies. For the dismantling phase, waste is generated fast along with the work progress, so integrated planning for project delivery and waste generation is needed in order to organize prompt handling and treatment. For the fit-out phase, the work is similar as new construction. Factors which are particularly linked to generating waste on site need to be controlled and monitored. Continuing research in this space will help improve the practice of waste management in office building retrofit projects. The new strategies will help promote the practicality of project waste planning and management and stakeholders’ capability of coordinating waste management and project delivery.
Resumo:
Achieving sustainability is one of the major goals of many urban transportation systems. Over the years, many innovative policies have been attempted to achieve an efficient, safe, and sustainable transport system. Those policies often require smart technologies to assist implementation process and enhance effectiveness. This paper discusses how sustainability can be promoted by embedding smart technologies in a modern transportation system. In particular, this paper studies the transport system of Singapore to address how this system is addressing sustainability through the use of smart technologies. Various technological initiatives in managing traffic flow, monitoring and enforcement, sharing real-time information, and managing revenues are discussed in light of their potentiality in addressing sustainability issues. The Singapore experience provides a useful reference for the cities intending to develop and promote a sustainable transport system.
Resumo:
This paper investigates the policies and instruments adopted in Hong Kong to control the carbon emissions of construction facilities, including the whole building life cycle: production of material stage, construction stage, operation stage and demolition stage. This commences with a literature review comparing activities world-wide to those in Hong Kong to identify the main issues at stake, followed by a report on a series of local interviews to evaluate the present situation in Hong Kong, as well as future opportunities for local carbon mitigation. The interviewees included practitioners from engineering contracting firms, consulting firms, clients and energy provider, together with two university experts and a counsellor. A small case study is also provided of a building project in Hong Kong to illustrate some of the innovative design aspects being incorporated into buildings in Hong Kong as a result of the current emphasis on sustainability. The paper concludes with a summary of main findings and proposals for improvement in policy related to carbon mitigation and building sustainability in Hong Kong.
Resumo:
Sustainability is an issue for everyone. For instance, the higher education sector is being asked to take an active part in creating a sustainable future, due to their moral responsibility, social obligation, and their own need to adapt to the changing higher education environment. By either signing declarations or making public statements, many universities are expressing their desire to become role models for enhancing sustainability. However, too often they have not delivered as much as they had intended. This is particularly evident in the lack of physical implementation of sustainable practices in the campus environment. Real projects such as green technologies on campus have the potential to rectify the problem in addition to improving building performance. Despite being relatively recent innovations, Green Roof and Living Wall have been widely recognized because of their substantial benefits, such as runoff water reduction, noise insulation, and the promotion of biodiversity. While they can be found in commercial and residential buildings, they only appear infrequently on campuses as universities have been very slow to implement sustainability innovations. There has been very little research examining the fundamental problems from the organizational perspective. To address this deficiency, the researchers designed and carried out 24 semi-structured interviews to investigate the general organizational environment of Australian universities with the intention to identify organizational obstacles to the delivery of Green Roof and Living Wall projects. This research revealed that the organizational environment of Australian universities still has a lot of room to be improved in order to accommodate sustainability practices. Some of the main organizational barriers to the adoption of sustainable innovations were identified including lack of awareness and knowledge, the absence of strong supportive leadership, a weak sustainability-rooted culture and several management challenges. This led to the development of a set of strategies to help optimize the organizational environment for the purpose of better decision making for Green Roof and Living Wall implementation.
Resumo:
At the end of the first decade of the twenty-first century, there is unprecedented awareness of the need for a transformation in development, to meet the needs of the present while also preserving the ability of future generations to meet their own needs. However, within engineering, educators still tend to regard such development as an ‘aspect’ of engineering rather than an overarching meta-context, with ad hoc and highly variable references to topics. Furthermore, within a milieu of interpretations there can appear to be conflicting needs for achieving sustainable development, which can be confusing for students and educators alike. Different articulations of sustainable development can create dilemmas around conflicting needs for designers and researchers, at the level of specific designs and (sub-) disciplinary analysis. Hence sustainability issues need to be addressed at a meta-level using a whole of system approach, so that decisions regarding these dilemmas can be made. With this appreciation, and in light of curriculum renewal challenges that also exist in engineering education, this paper considers how educators might take the next step to move from sustainable development being an interesting ‘aspect’ of the curriculum, to sustainable development as a meta-context for curriculum renewal. It is concluded that capacity building for such strategic considerations is critical in engineering education.
Resumo:
This publication consists of a volume of papers presented at the workshop of the CIB Task Group 58: Clients and Construction Innovation, held on May 18- 19, 2009 at the University of Alberta in Edmonton, Canada. The workshop theme, “Leveraging Innovation for Sustainable Construction”, reflects a growing concern among clients for perspectives, approaches, and tools that will secure the practice of construction economically, socially, and environmentally. This collection encompasses some of the most incisive assessments of the challenges facing the construction industry today from a range of researchers and industry practitioners who are leading the way for tomorrow’s innovations. It provides a useful documentation of the ongoing conversation regarding innovation and sustainability issues and a foundation of knowledge for future research and development. The papers contained in this volume explore the workshop’s overarching theme of how to leverage innovation to increase the sustainability of the construction process and product. Participants sought to generate discussion on the topics of innovation and sustainability within the construction field, to share international examples of innovation from the research community and from industry, and to establish a point of reference for ongoing enquiry. In particular, our contributors have noted the value of learning through practice in order to orient research based on real-world industry experience. Chapters two and three present complementary models of sustainable research programs through the three parts collaboration of government, industry, and academia. Chapters four and five explore new tools and forms of technological innovation as they are deployed to improve construction project management and set the direction for advances in research. Chapters six, seven, and eight closely study practical examples of innovation in large-scale construction projects, showing with concrete results the impact of applying creative methods and best practices to the field. Innovation and sustainability in construction are truly global efforts; these papers illustrate how we can draw on international examples and cooperative organizations to address these important issues for long-term benefit of the industry.
Resumo:
Human activity-induced vibrations in slender structural sys tems become apparent in many different excitation modes and consequent action effects that cause discomfort to occupants, crowd panic and damage to public infrastructure. Resulting loss of public confidence in safety of structures, economic losses, cost of retrofit and repairs can be significant. Advanced computational and visualisation techniques enable engineers and architects to evolve bold and innovative structural forms, very often without precedence. New composite and hybrid materials that are making their presence in structural systems lack historical evidence of satisfactory performance over anticipated design life. These structural systems are susceptible to multi-modal and coupled excitation that are very complex and have inadequate design guidance in the present codes and good practice guides. Many incidents of amplified resonant response have been reported in buildings, footbridges, stadia a nd other crowded structures with adverse consequences. As a result, attenuation of human-induced vibration of innovative and slender structural systems very ofte n requires special studies during the design process. Dynamic activities possess variable characteristics and thereby induce complex responses in structures that are sensitive to parametric variations. Rigorous analytical techniques are available for investigation of such complex actions and responses to produce acceptable performance in structural systems. This paper presents an overview and a critique of existing code provisions for human-induced vibration followed by studies on the performance of three contrasting structural systems that exhibit complex vibration. The dynamic responses of these systems under human-induced vibrations have been carried out using experimentally validated computer simulation techniques. The outcomes of these studies will have engineering applications for safe and sustainable structures and a basis for developing design guidance.