942 resultados para stars: coronae


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent results and data suggest that high magnetic fields in neutron stars (NS) strongly affect the characteristics (radius, mass) of the star. Such stars are even separated into a class known as magnetars, for which the surface magnetic field is greater than 10(14) G. In this work we discuss the effect of such a high magnetic field on the phase transition of a NS to a quark star (QS). We study the effect of magnetic field on the transition from NS to QS including the magnetic-field effect in the equation of state (EoS). The inclusion of the magnetic field increases the range of baryon number densities for which the flow velocities of the matter in the respective phase are finite. The magnetic field helps in initiation of the conversion process. The velocity of the conversion front, however, decreases due to the presence of the magnetic field, as the presence of the magnetic field reduces the effective pressure (P). The magnetic field of the star is decreased by the conversion process, and the resultant QS has lower magnetic field than the initial NS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we model dwarf galaxies as a two-component system of gravitationally coupled stars and atomic hydrogen gas in the external force field of a pseudo-isothermal dark matter halo, and numerically obtain the radial distribution of HI vertical scale heights. This is done for a group of four dwarf galaxies (DDO 154, Ho II, IC 2574 and NGC 2366) for which most necessary input parameters are available from observations. The formulation of the equations takes into account the rising rotation curves generally observed in dwarf galaxies. The inclusion of self-gravity of the gas into the model at par with that of the stars results in scale heights that are smaller than what was obtained by previous authors. This is important as the gas scale height is often used for deriving other physical quantities. The inclusion of gas self-gravity is particularly relevant in the case of dwarf galaxies where the gas cannot be considered a minor perturbation to the mass distribution of the stars. We find that three out of four galaxies studied show a flaring of their HI discs with increasing radius, by a factor of a few within several disc scale lengths. The fourth galaxy has a thick HI disc throughout. This flaring arises as a result of the gas velocity dispersion remaining constant or decreasing only slightly while the disc mass distribution declines exponentially as a function of radius.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the HΙ scale height data along with the HΙ rotation curve as constraints to probe the shape and density profile of the dark matter halos of M31 (Andromeda) and the superthin, low surface brightness (LSB) galaxy UGC 07321. We model the galaxy as a two component system of gravitationally-coupled stars and gas subjected to the force field of a dark matter halo. For M31, we get a flattened halo which is required to match the outer galactic HΙ scale height data, with our best-fit axis ratio (0.4) lying at the most oblate end of the distributions obtained from cosmological simulations. For UGC 07321, our best-fit halo core radius is only slightly larger than the stellar disc scale length, indicating that the halo is important even at small radii in this LSB galaxy. The high value of the gas velocity dispersion required to match the scale height data can explain the low star-formation rate of this galaxy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By means of N-body simulations we investigate the impact of minor mergers on the angular momentum and dynamical properties of the merger remnant. Our simulations cover a range of initial orbital characteristics and gas-to-stellar mass fractions (from 0 to 20%), and include star formation and supernova feedback. We confirm and extend previous results by showing that the specific angular momentum of the stellar component always decreases independently of the orbital parameters or morphology of the satellite, and that the decrease in the rotation velocity of the primary galaxy is accompanied by a change in the anisotropy of the orbits. However, the decrease affects only the old stellar population, and not the new population formed from gas during the merging process. This means that the merging process induces an increasing difference in the rotational support of the old and young stellar components, with the old one lagging with respect to the new. Even if our models are not intended specifically to reproduce the Milky Way and its accretion history, we find that, under certain conditions, the modeled rotational lag found is compatible with that observed in the Milky Way disk, thus indicating that minor mergers can be a viable way to produce it. The lag can increase with the vertical distance from the disk midplane, but only if the satellite is accreted along a direct orbit, and in all cases the main contribution to the lag comes from stars originally in the primary disk rather than from stars in the satellite galaxy. We also discuss the possibility of creating counter-rotating stars in the remnant disk, their fraction as a function of the vertical distance from the galaxy midplane, and the cumulative effect of multiple mergers on their creation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years a number of white dwarfs have been observed with very high surface magnetic fields. We can expect that the magnetic field in the core of these stars would be much higher (similar to 10(14) G). In this paper, we analytically study the effect of high magnetic field on relativistic cold electron, and hence its effect on the stability and the mass-radius relation of a magnetic white dwarf. In strong magnetic fields, the equation of state of the Fermi gas is modified and Landau quantization comes into play. For relatively very high magnetic fields (with respect to the average energy density of matter) the number of Landau levels is restricted to one or two. We analyze the equation of states for magnetized electron degenerate gas analytically and attempt to understand the conditions in which transitions from the zeroth Landau level to first Landau level occurs. We also find the effect of the strong magnetic field on the star collapsing to a white dwarf, and the mass-radius relation of the resulting star. We obtain an interesting theoretical result that it is possible to have white dwarfs with mass more than the mass set by Chandrasekhar limit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than 70 molecules of varied nature have been identified in the envelopes of carbon-rich stars through their spectral fingerprints in the microwave or far infrared regions. Many of them are carbon chain molecules and radicals, and a significant number are unique to the circumstellar medium. The determination of relevant laboratory kinetics data is critical to keep up with the development of the high spectral and spatial resolution observations and of the refinement of chemical models. Neutralneutral reactions of the CN radical with unsaturated hydrocarbons could be a dominant route in the formation of cyanopolyynes, even at low temperatures and deserve a detailed laboratory investigation. The approach we have developed aims to bridge the temperature gap between resistively heated flow tubes and shock tubes. The present kinetic measurements are obtained using a new reactor combining a high-enthalpy source with a flow tube and a pulsed laser photolysislaser-induced fluorescence system to probe the undergoing chemical reactions. The high-enthalpy flow tube has been used to measure the rate constant of the reaction of the CN radical with propane (C3H8), propene (C3H6), allene (C3H4), 1,3-butadiene (1,3-C4H6), and 1-butyne (C4H6) over a temperature range extending from 300 to 1200 K. All studied reactions of CN with unsaturated hydrocarbons are rapid, with rate coefficients greater than 10-10 cm3 center dot molecule-1 center dot s-1 and exhibit slight negative temperature dependence above room temperature. (c) 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 753766, 2012

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compact stars with strong magnetic fields (magnetars) have been observationally determined to have surface magnetic fields of order of 10(14)-10(15) G, the implied internal field strength being several orders larger. We study the equation of state and composition of dense hypernuclear matter in strong magnetic fields in a range expected in the interiors of magnetars. Within the non-linear Boguta-Bodmer-Walecka model we find that the magnetic field has sizable influence on the properties of matter for central magnetic field B >= 10(17) G, in particular the matter properties become anisotropic. Moreover, for the central fields B >= 10(18) G, the magnetized hypernuclear matter shows instability, which is signalled by the negative sign of the derivative of the pressure parallel to the field with respect to the density, and leads to vanishing parallel pressure at the critical value B-cr congruent to 10(19) G. This limits the range of admissible homogeneously distributed fields in magnetars to fields below the critical value B-cr. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some low-surface-brightness galaxies are known to have extremely thin stellar discs with the vertical-to-planar axes ratio 0.1 or less, often referred to as superthin galaxies. Although their existence is now known for over three decades, the physical origin of the superthin discs is still not understood. We model the vertical thickness of the stellar disc using our model of a two-component (gravitationally coupled stars and gas) disc embedded in a dark matter halo, for a bulgeless, superthin galaxy UGC 7321 which has a dense, compact halo, and is compare with a typical dwarf irregular galaxy Holmberg II which has a low-density, non-compact halo. We show that while the presence of gas does constrain the stellar disc thickness and hence its axial ratio, it is the compact dark matter halo which plays the decisive role in determining the mean distribution of stars in the vertical direction in low-luminosity bulgeless galaxies like UGC 7321, and causes the stellar disc to be superthin. Thus, the compactness of the dark matter halo significantly affects the disc structure and this could be important for the early evolution of galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent observations of Sun-like stars, similar to our Sun in their surface temperature (5600-6000 K) and slow rotation (rotational period > 10 d), using the Kepler satellite by Maehara et al. (2012, Nature, 485, 478) have revealed the existence of superflares (with energy of 10(33)-10(35) erg). From statistical analyses of these superflares, it was found that superflares with energy of 10(34) erg occur once in 800 yr, and superflares with 10(35) erg occur once in 5000 yr. In this paper, we examine whether superflares with energy of 10(33)-10(35) erg could occur on the present Sun through the use of simple order-of-magnitude estimates based on current ideas related to the mechanisms of the solar dynamo. If magnetic flux is generated by differential rotation at the base of the convection zone, as assumed in typical dynamo models, it is possible that the present Sun would generate a large sunspot with a total magnetic flux of similar to 2 x 10(23) Mx (= G cm(2)) within one solar cycle period, and lead to superflares with an energy of 10(34) erg. To store a total magnetic flux of similar to 10(24) Mx, necessary for generating 10(35) erg superflares, it would take similar to 40 yr. Hot Jupiters have often been argued to be a necessary ingredient for the generation of superflares, but we found that they do not play any essential role in the generation of magnetic flux in the star itself, if we consider only the magnetic interaction between the star and the hot Jupiter. This seems to be consistent with Maehara et al.'s finding of 148 superflare-generating solar-type stars that do not have a hot Jupiter-like companion. Altogether, our simple calculations, combined with Maehara et al.'s analysis of superflares on Sun-like stars, show that there is a possibility that superflares of 10(34) erg would occur once in 800 yr on our present Sun.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stellar mass black holes (SMBHs), forming by the core collapse of very massive, rapidly rotating stars, are expected to exhibit a high density accretion disk around them developed from the spinning mantle of the collapsing star. A wide class of such disks, due to their high density and temperature, are effective emitters of neutrinos and hence called neutrino cooled disks. Tracking the physics relating the observed (neutrino) luminosity to the mass, spin of black holes (BHs) and the accretion rate ((M) over dot) of such disks, here we establish a correlation between the spin and mass of SMBHs at their formation stage. Our work shows that spinning BHs are more massive than nonspinning BHs for a given (M) over dot. However, slowly spinning BHs can turn out to be more massive than spinning BHs if (M) over dot at their formation stage was higher compared to faster spinning BHs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate nucleosynthesis inside the gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star. After that, an outward moving shock triggers a successful supernova. However, the supernova ejecta lacks momentum and within a few seconds the newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics of such an accretion disk formed from the fallback material of the supernova ejecta has been studied extensively in the past. We use these well-established hydrodynamic models for our accretion disk in order to understand nucleosynthesis, which is mainly advection dominated in the outer regions. Neutrino cooling becomes important in the inner disk where the temperature and density are higher. The higher the accretion rate (M) over dot is, the higher the density and temperature are in the disks. We deal with accretion disks with relatively low accretion rates: 0.001 M-circle dot s(-1) less than or similar to (M) over dot less than or similar to 0.01 M-circle dot s(-1) and hence these disks are predominantly advection dominated. We use He-rich and Si-rich abundances as the initial condition of nucleosynthesis at the outer disk, and being equipped with the disk hydrodynamics and the nuclear network code, we study the abundance evolution as matter inflows and falls into the central object. We investigate the variation in the nucleosynthesis products in the disk with the change in the initial abundance at the outer disk and also with the change in the mass accretion rate. We report the synthesis of several unusual nuclei like P-31, K-39, Sc-43, Cl-35 and various isotopes of titanium, vanadium, chromium, manganese and copper. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthesized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk via outflows and hence they should leave their signature in observed data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Networks such as organizational network of a global company play an important role in a variety of knowledge management and information diffusion tasks. The nodes in these networks correspond to individuals who are self-interested. The topology of these networks often plays a crucial role in deciding the ease and speed with which certain tasks can be accomplished using these networks. Consequently, growing a stable network having a certain topology is of interest. Motivated by this, we study the following important problem: given a certain desired network topology, under what conditions would best response (link addition/deletion) strategies played by self-interested agents lead to formation of a pairwise stable network with only that topology. We study this interesting reverse engineering problem by proposing a natural model of recursive network formation. In this model, nodes enter the network sequentially and the utility of a node captures principal determinants of network formation, namely (1) benefits from immediate neighbors, (2) costs of maintaining links with immediate neighbors, (3) benefits from indirect neighbors, (4) bridging benefits, and (5) network entry fee. Based on this model, we analyze relevant network topologies such as star graph, complete graph, bipartite Turan graph, and multiple stars with interconnected centers, and derive a set of sufficient conditions under which these topologies emerge as pairwise stable networks. We also study the social welfare properties of the above topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate nucleosynthesis inside the outflows from gamma-ray burst (GRB) accretion disks formed by the Type II collapsars. In these collapsars, massive stars undergo core collapse to form a proto-neutron star initially, and a mild supernova (SN) explosion is driven. The SN ejecta lack momentum, and subsequently this newly formed neutron star gets transformed to a stellar mass black hole via massive fallback. The hydrodynamics and the nucleosynthesis in these accretion disks have been studied extensively in the past. Several heavy elements are synthesized in the disk, and much of these heavy elements are ejected from the disk via winds and outflows. We study nucleosynthesis in the outflows launched from these disks by using an adiabatic, spherically expanding outflow model, to understand which of these elements thus synthesized in the disk survive in the outflow. While studying this, we find that many new elements like isotopes of titanium, copper, zinc, etc., are present in the outflows. Ni-56 is abundantly synthesized in most of the cases in the outflow, which implies that the outflows from these disks in a majority of cases will lead to an observable SN explosion. It is mainly present when outflow is considered from the He-rich, Ni-56/Fe-54-rich zones of the disks. However, outflow from the Si-rich zone of the disk remains rich in silicon. Although emission lines of many of these heavy elements have been observed in the X-ray afterglows of several GRBs by Chandra, BeppoSAX, XMM-Newton, etc., Swift seems to have not yet detected these lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low-surface-brightness galaxies are gas rich and yet have a low star formation rate; this is a well-known puzzle. The spiral features in these galaxies are weak and difficult to trace, although this aspect has not been studied much. These galaxies are known to be dominated by the dark matter halo from the innermost regions. Here, we do a stability analysis for the galactic disc of UGC 7321, a low-surface-brightness, superthin galaxy, for which the various observational input parameters are available. We show that the disc is stable against local, linear axisymmetric and non-axisymmetric perturbations. The Toomre Q parameter values are found to be large (>> 1) mainly due to the low disc surface density, and the high rotation velocity resulting due to the dominant dark matter halo, which could explain the observed low star formation rate. For the stars-alone case, the disc shows finite swing amplification but the addition of dark matter halo suppresses that amplification almost completely. Even the inclusion of the low-dispersion gas which constitutes a high disc mass fraction does not help in causing swing amplification. This can explain why these galaxies do not show strong spiral features. Thus, the dynamical effect of a halo that is dominant from inner regions can naturally explain why star formation and spiral features are largely suppressed in low-surface-brightness galaxies, making these different from the high-surface-brightness galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Filamentary structures are ubiquitous in astrophysics and are observed at various scales. On a cosmological scale, matter is usually distributed along filaments, and filaments are also typical features of the interstellar medium. Within a cosmic filament, matter can contract and form galaxies, whereas an interstellar gas filament can clump into a series of bead-like structures that can then turn into stars. To investigate the growth of such instabilities, we derive a local dispersion relation for an idealized self-gravitating filament and study some of its properties. Our idealized picture consists of an infinite self-gravitating and rotating cylinder with pressure and density related by a polytropic equation of state. We assume no specific density distribution, treat matter as a fluid, and use hydrodynamics to derive the linearized equations that govern the local perturbations. We obtain a dispersion relation for axisymmetric perturbations and study its properties in the (kR, kz) phase space, where kR and kz are the radial and longitudinal wavenumbers, respectively. While the boundary between the stable and unstable regimes is symmetrical in kR and kz and analogous to the Jeans criterion, the most unstable mode displays an asymmetry that could constrain the shape of the structures that form within the filament. Here the results are applied to a fiducial interstellar filament, but could be extended for other astrophysical systems, such as cosmological filaments and tidal tails.