937 resultados para starch hydrolysis
Resumo:
The biodegradability properties of poly(epsilon-caprolactone) (PCL) and modified adipate-starch (AS) blends, using Edenol-3203 (E) as a starch plasticizer, were investigated in laboratory by burial tests of the samples in previously analyzed agricultural soil. The biodegradation process was carried out using the respirometric test according to ASTM D 5988-96, and the mineralization was followed by both variables such as carbon dioxide evolution and mass loss. The results indicated that the presence of AS-E accelerated the biodegradation rate as expected.
Resumo:
Mixed calcium and copper oxalates, with different proportions of Ca2+ and Cu2+ ions, were precipitated by dimethyl oxalate hydrolysis in homogeneous solution. The compounds were evaluated by means of scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetry (TG), and differential thermal analysis (DTA). The results suggested quantitative precipitation without solid solution formation. From the TG and DTA curves, it was possible to evaluate the Ca2+ ion proportion in the solid phase and to confirm the precipitation of the individual species.
Resumo:
Starch isolated from non-edible Aesculus hippocastanum seeds was characterized and used for preparing starch-based materials. The apparent amylose content of the isolated starch was 33.1%. The size of starch granules ranged from 0.7 to 35 pm, and correlated with the shape of granules (spherical, oval and irregular). The chain length distribution profile of amylopectin showed two peaks, at polymerization degree (DP) of 12 and 41-43. Around 53% of branch unit chains had DP in the range of 11-20. A. hippocastanum starch displayed a typical C-type pattern and the maximum decomposition temperature was 317 degrees C.Thermoplastic starch (TPS) prepared from A. hippocastanum with glycerol and processed by melt blending exhibited adequate mechanical and thermal properties. In contrast, plasticized TPS with glycerol:malic acid (1:1) showed lower thermal stability and a pasty and sticky behavior, indicating that malic acid accelerates degradation of starch during processing. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recently there is a great quest of producing alcohol from starchy resources, replacing the sugar cane. The most common starchy sources are cassava, maize and sweet potatoes and a lot of research are been realized with excellent results. In this work it was evaluated the influence of the concentration of dry matter on the enzymatic hydrolysis process of starch from sweet potato for ethanol production. Through the sweet potato was produced a flour using a low-cost method and easy operation equipments. The sweet potato flour was characterized physical and chemically and from these results was prepared the treatments for enzymatic hydrolysis. The experimental design considered as independent variable the dry matter concentration of the sweet potato flour in 3 levels; 10, 15 and 20% in the formulation of suspensions. The other variables were keeping constant being: temperature in the 1° hydrolysis step of 90°C and time of 2 hours; temperature in the 2° saccharification step of 60°C and time of 17 hours. The hydrolysates obtained at the three assays were transferred to six liter enlerynmeyer and inoculated with a biologic catalyst, Saccharomyces, dehydrated yeasts of Saccharomyces cerevisiae CAT 1, at a rate of 5% in weight. The flasks were placed in a shaker type orbital with controlled temperature of 30°C during a time of 15 hours. The initial reducer sugars concentration and respective ethanol concentrations in wine were: 11.2% glucose and 2.16% ethanol in the suspension with 10% of dry matter; 13.5% glucose and 4.39% ethanol with 15% and 17.5% glucose and 6.03% ethanol in suspension with 20% of dry matter. ix The results showed that the higher percentage of dry matter carried out to higher sugar yield in hydrolyzed. It was possible observed that products quality improved with a higher concentration of dry matter
Resumo:
A protein extract containing a plant lipase from oleaginous seeds of Pachira aquatica was tested using soybean oil, wastewater from a poultry processing plant, and beef fat particles as substrate. The hydrolysis experiments were carried out at a temperature of 40°C, an incubation time of 90 minutes, and pH 8.0-9.0. The enzyme had the best stability at pH 9.0 and showed good stability in the alkaline range. It was found that P. aquatica lipase was stable in the presence of some commercial laundry detergent formulations, and it retained full activity up to 0.35% in hydrogen peroxide, despite losing activity at higher concentrations. Concerning wastewater, the lipase increased free fatty acids release by 7.4 times and promoted the hydrolysis of approximately 10% of the fats, suggesting that it could be included in a pretreatment stage, especially for vegetable oil degradation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aims of this study were to assess the turmeric oleoresin microencapsulation by freeze-drying with modified starch/gelatin and to evaluate its stability during storage at different temperatures and light. Encapsulated turmeric oleoresin w stored at −20, 25 and 60C, in the absence of light, and at 25C in the presence of light, and analyzed over a period of 6 weeks for curcumin and total phenolic contents and color. The different concentrations of wall material showed no significant effect on the curcumin retention. The best conditions for microencapsulation of turmeric oleoresin were: wall material composed of 30 g/100 g of modified starch + 1 g/100 g gelatin and mechanical homogenization. Encapsulated material was more stable during storage at −20C and less stable at 25C in the presence of light.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)