965 resultados para spotsize converter
Resumo:
The short duration of the Doppler signal and noise content in it necessitate a validation scheme to be incorporated in the electronic processor used for frequency measurement, There are several different validation schemes that can be employed in period timing devices. A detailed study of the influence of these validation schemes on the measured frequency has been reported here. These studies were carried out by using a combination of a fast A/D converter and computer. Doppler bursts obtained from an air flow were digitised and stored on magnetic discs. Suitable computer programs were then used to simulate the performance of period timing devices with different validation schemes and the frequency of the stored bursts were evaluated. It is found that best results are obtained when the validation scheme enables frequency measurement to be made over a large number of cycles within the burst.
Resumo:
An alternative approach to digital PWM generation uses an accumulator rather than a counter to generate the carrier. This offers several advantages. The resolution and gain of the pulse width modulator remain constant regardless of the module clock frequency and PWM output frequency. The PWM resolution also becomes fixed at the register width. Even at high PWM frequencies, the resolution remains high when averaged over a number of PWM cycles. An inherent dithering of the PWM waveform introduced over successive cycles blurs the switching spectra without distorting the modulating waveform. The technique also lends itself to easily generating several phase shifted PWM waveforms suitable for multilevel converter modulation. Several example waveforms generated using both simulation and FPGA hardware are presented.
Resumo:
This paper proposes a novel modulation strategy for a phase controlled Capacitor-Inductor-Capacitor (CLC) Resonant Dual Active Bridge (RDAB). The proposed modulation strategy improves the soft turn-on, Zero-Current-Switching (ZCS) and Zero-Voltage-Switching (ZVS) range of the converter while only minimally increasing the required reactive currents in the ac link. A mathematical analysis of the proposed modulation scheme is presented along with a theoretical loss comparison between several modulation strategies. The proposed modulation strategy was implemented and the experimental results are presented.
Resumo:
The recent trend towards minimizing the interconnections in large scale integration (LSI) circuits has led to intensive investigation in the development of ternary circuits and the improvement of their design. The ternary multiplexer is a convenient and useful logic module which can be used as a basic building block in the design of a ternary system. This paper discusses a systematic procedure for the simplification and realization of ternary functions using ternary multiplexers as building blocks. Both single level and multilevel multiplexing techniques are considered. The importance of the design procedure is highlighted by considering two specific applications, namely, the development of ternary adder/subtractor and TCD to ternary converter.
Resumo:
The deviation in the performance of active networks due to practical operational amplifiers (OA) is mainly because of the finite gain bandwidth productBand nonzero output resistanceR_0. The effect ofBandR_0on two OA impedances and single and multi-OA filters are discussed. In filters, the effect ofR_0is to add zeros to the transfer function often making it nonminimum phase. A simple method of analysis has been suggested for 3-OA biquad and coupled biquad circuits. A general method of noise minimization of the generalized impedance converter (GIC), while operating OA's within the prescribed voltage and current limits, is also discussed. The 3-OA biquadratic sections analyzed also exhibit noise behavior and signal handling capacity similar to the GIC. The GIC based structures are found to be better than other configurations both in biquadratic sections and direct realizations of higher order transfer functions.
Resumo:
Speed control of ac motors requires variable frequency, variable current, or variable voltage supply. Variable frequency supply can be obtained directly from a fixed frequency supply by using a frequency converter or from a dc source using inverters. In this paper a control technique for reference wave adaptive-current generation by modulating the inverter voltage is explained. Extension of this technique for three-phase induction-motor speed control is briefly explained. The oscillograms of the current waveforms obtained from the experimental setup are also shown.
Resumo:
An isolated wind power generation scheme using slip ring induction machine (SRIM) is proposed. The proposed scheme maintains constant load voltage and frequency irrespective of the wind speed or load variation. The power circuit consists of two back-to-back connected inverters with a common dc link, where one inverter is directly connected to the rotor side of SRIM and the other inverter is connected to the stator side of the SRIM through LC filter. Developing a negative sequence compensation method to ensure that, even under the presence of unbalanced load, the generator experiences almost balanced three-phase current and most of the unbalanced current is directed through the stator side converter is the focus here. The SRIM controller varies the speed of the generator with variation in the wind speed to extract maximum power. The difference of the generated power and the load power is either stored in or extracted from a battery bank, which is interfaced to the common dc link through a multiphase bidirectional fly-back dc-dc converter. The SRIM control scheme, maximum power point extraction algorithm and the fly-back converter topology are incorporated from available literature. The proposed scheme is both simulated and experimentally verified.
Resumo:
We present a low power gas sensor system on CMOS platform consisting of micromachined polysilicon microheater, temperature controller circuit, resistance readout circuit and SnO2 transducer film. The design criteria for different building blocks of the system is elaborated The microheaters are optimized for temperature uniformity as well as static and dynamic response. The electrical equivalent model for the microheater is derived by extracting thermal and mechanical poles through extensive laser doppler vibrometer measurements. The temperature controller and readout circuit are realized on 130nm CMOS technology The temperature controller re-uses the heater as a temperature sensor and controls the duty cycle of the waveform driving the gate of the power MOSFET which supplies heater current. The readout circuit, with subthreshold operation of the MOSFETs, is based oil resistance to time period conversion followed by frequency to digital converter Subthreshold operatin of MOSFETs coupled with sub-ranging technique, achieves ultra low power consumption with more than five orders of magnitude dynamic range RF sputtered SnO2 film is optimized for its microstructure to achive high sensitivity to sense LPG gas.
Resumo:
A switched rectifier DC voltage source three-level neutral-point-clamped (NPC) converter topology is proposed here to alleviate the inverter from capacitor voltage balancing in three-level drive systems. The proposed configuration requires only one DC link with a voltage of half of that needed in a conventional NPC inverter. To obtain a rated DC link voltage, the rectifier DC source is alternately connected in parallel to one of the two series capacitors using two switches and two diodes with device voltage ratings of half the total DC bus voltage. The frequency at which the voltage source is switched is independent of the inverter and will not affect its operation since the switched voltage source in this configuration balances the capacitors automatically. The proposed configuration can also be used as a conventional two-level inverter in the lower modulation index range, thereby increasing the reliability of the drivesystem. A space-vector-based PWM scheme is used to verify this proposed topology on a laboratory system.
Resumo:
A new solution for unbalanced and nonlinear loads in terms of power circuit topology and controller structure is proposed in this paper. A three-phase four-wire high-frequency ac-link inverter is adopted to cater to such loads. Use of high-frequency transformer results in compact and light-weight systems. The fourth wire is taken out from the midpoint of the isolation transformer in order to avoid the necessity of an extra leg. This makes the converter suitable for unbalanced loads and eliminates the requirements of bulky capacitor in half-bridge inverter. The closed-loop control is carried out in stationary reference frame using proportional + multiresonant controller (three separate resonant controller for fundamental, fifth and seventh harmonic components). The limitations on improving steady-state response of harmonic resonance controllers is investigated and mitigated using a lead-lag compensator. The proposed voltage controller is used along with an inner current loop to ensure excellent performance of the power converter. Simulation studies and experimental results with 1 kVA prototype under nonlinear and unbalanced loading conditions validate the proposed scheme.
Resumo:
Inductors are important energy storage elements that are used as filters in switching power converters. The operating efficiency of power inductors depend on the initial design choices and they remain as one of the most inefficient elements in a power converter. The focus of this paper is to explore the inductor design procedure from the point of efficiency and operating temperature. A modified form of the area product approach is used as starting point for the inductor design. The equations which estimate the power loss in core and copper winding are described. The surface temperature of the inductor is modelled using heat transfer equations for radiation and natural convection. All design assumptions are verified by actual experimental data and results show a good match with the analysis.
Resumo:
Design of high-frequency inductors for purposes like Active Front End (AFE) converter filters involves analytical calculations based on methods like area product approach and accurate graphical methods. Once a core with an area product is selected the subsequent calculations of inductance and peak operating flux requires the estimation of reluctance of the magnetic circuit. This in turn demands an estimate of the fringing that will happen in the air gap of the inductor. In this paper we have looked at analytical methods for evaluating fringing flux and compared it with results from finite element method. Different levels of details of modelling the inductor is first considered for this purpose. The end results are compared with experimental measurements of inductance. It is shown that simple fringing flux model can provide accurate models for the inductor design.
Resumo:
A novel ZVS auxiliary switch commutated variation for all DGDC converter topologies has been proposed in 2006. With proper designation of the circuit variables (throw current I and the pole voltage V), all these converters are seen to be governed by an identical set of equations. With idealized switches, the steady-state performance is obtainable in an analytical form. The conversion ratio of the converter topologies is obtained. A generalized equivalent circuit emerges for all these converters from the steady-state conversion ratio. It also provides a dynamic model as well. With these generalized steady-state equivalent circuits, small signal analysis of these converters may be carried out readily. It enables one to use the familiar state space averaged results of the standard PWM DGDC converters for the resonant counterparts. Th dc and ac models reveals that dc and low frequency behaviour of the proposed family of converters is similiar to that of its PWM parent
Resumo:
In the recent past it has been found that HVDC transmission systems and turbine-generator shaft torsional dynamics can interact in an unfavourable manner. This paper presents a detailed linearised state space model of AC/DC system to study this torsional interaction. The model developed is used to study the effect of various system parameters, such as, dc line loading, converter firing angle, the firing scheme employed. The results obtained are compared with those given in[3].
Resumo:
A procedure has been given for minimizing the total output noise of a Generalized Impedance Converter (GIC), subject to constraints dictated by signal handling capability of the Operational Amplifiers and ease of microcircuit fabrication. The noise reduction is achieved only by the adjustment of RC elements of the GIC, and the total output noise after optimization in the example cited is close to the theoretical lower limit. The output noise of a higher-order filter can be reduced by RC-optimizing the individual GIC's of the active realization. Experimental results on a 20–24 kHz channel bank band-pass filter demonstrate the effectiveness of the above procedure.