979 resultados para soil chemical property


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The environmental fate of polycyclic aromatic hydrocarbons (PAHs) in soils is motivated by their wide distribution, high persistence, and potentially deleterious effect on human health. Polycyclic aromatic hydrocarbons constitute the largest group of environmental contaminants released in the environment. Therefore, the potential biodegradation of these compounds is of vital importance. A biocarrier suitable for the colonization by micro-organisms for the purpose of purifying soil contaminated by polycyclic aromatic hydrocarbons was developed. The optimized composition of the biocarrier was polyvinyl alcohol (PVA) 10%, sodium alginate (SA) 0.5%, and powdered activated carbon (PAC) 5%. There was no observable cytotoxicity of biocarriers on immobilized cells and a viable cell population of 1.86 x 10(10) g(-1) was maintained for immobilized bacterium. Biocarriers made from chemical methods had a higher biodegradation but lower mechanical strengths. Immobilized bacterium Zoogloea sp. had an ideal capability of biodegradation for phenanthrene and pyrene over a relative wide concentration range. The study results showed that the biodegradation of phenanthrene and pyrene reached 87.0 and 75.4%, respectively, by using the optimal immobilized method of Zoogloea sp. cultivated in a sterilized soil. Immobilized Zoogloea sp. was found to be effective for biodegrading the soil contaminated with phenanthrene and pyrene. Even in natural (unsterilized) soil, the biodegradation of phenanthrene and pyrene using immobilized Zoogloea sp. reached 85.0 and 67.1%, respectively, after 168 h of cultivation, more than twice that achieved if the cells were not immobilized on the biocarrier. Therefore, the immobilization technology enhanced the competitive ability of introduced micro-organisms and represents an effective method for the biotreatment of soil contaminated with phenanthrene and pyrene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A methodology, based on a combination of routinely performed analyses and investigation of fundamental charge and anion sorption properties, was used to characterize the soils of the humid forest zone of Cameroon, In general, the soils have about 2 cmol kg(-1) permanent negative charge, with about 1 cmol kg(-1) from variable-charge sources at current soil pH values, Furthermore, they are impoverished with respect to Ca, Mg, and K, while Al frequently dominates the exchange complex. Thus, the ability of these soils to retain base cations is more limited than is suggested by the cation-exchange capacity (CEC), Therefore we propose the concept of a degradation index (DI) defined as: DI = 100(CEC5.5 - sum of basic cations)/CEC5.5, where CEC5.5 is the CEC measured at pH 5.5, This index encompasses degradation a soil may have experienced from natural or man-made causes, Extractable PO4 concentrations are considered very low and the soils have a moderate to high capacity to fix added PO4. Surface soil SO4 concentrations are considered marginal to deficient for plant growth, though adequate reserves of SO4 are held in the subsoil by SO4 sorption, The approach used demonstrated that the five morphologically different soil profile classes identified in the zone have similar chemical characteristics. Thus, the results of experimentation conducted on one of the soil profile classes will be applicable throughout the zone, Furthermore, the approach has provided a means of identifying comparable soil types in other parts of the world and will guide technology transfer, The analytical methods used in this study are relatively simple and require no specialized equipment, and are therefore within the capabilities of many laboratories in the developing world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil carbon is a major component of the terrestrial carbon cycle. The soils of the world contain more carbon than the combined total amounts occurring in vegetation and the atmosphere. Consequently, soils are a major reservoir of carbon and an important sink. Because of the relatively long period of time that carbon spends within the soil and is thereby withheld from the atmosphere, it is often referred to as being sequestered. Increasing the capacity of soils to sequester C provides a partial, medium-term countermeasure to help ameliorate the increasing CO2 levels in the atmosphere arising from fossil fuel burning and land clearing. Such action will also help to alleviate the environmental impacts arising from increasing levels of atmospheric CO2. The C sequestration potential of any soil depends on its capacity to store resistant plant components in the medium term and to protect and accumulate the humic substances (HS) formed from the transformations or organic materials in the soil environment. The sequestration potential of a soil depends on the vegetation it supports, its mineralogical composition, the depth of the solum, soil drainage, the availability of water and air, and the temperature of the soil environment. The sequestration potential also depends on the chemical characteristics of the soil organic matter and its ability to resist microbial decomposition. When accurate information for these features is incorporated in model systems, the potentials of different soils to sequester C can be reliably predicted. It is encouraging to know that improved soil and crop management systems now allow field yields to be maintained and soil C reserves to be increased, even for soils with depleted levels of soil C. Estimates of the soil C sequestration potential are discussed. Inevitably HS are the major components of the additionally sequestered C. It will be important to know more about the compositions and associations of these substances in the soil if we are able to predict reasonably accurately the ability of any soil type to sequester C in different cropping and soil management systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystem management such as plant residue retention and prescribed burning can significantly affect soil organic matter (SOM) composition and, thereby, the closely associated carbon (C) and nitrogen (N) cycling processes, which underpin terrestrial ecosystem productivity and sustainability. Humic acid (HA) is an important SOM component and its chemical composition has attracted much attention. Here we report the first application of N-14 nuclear magnetic resonance (NMR) spectroscopy to soil HA study, revealing the surprising existence of nitrate-N and ammonia-N in the HAs. This newly discovered HA nitrate-N, though in a relatively low concentrations, is closely related to soil N availability and responsive to plant residue management regimes in contrasting forest ecosystems. The HA nitrate-N may be a useful and sensitive biochemical indicator of SOM quality in response to different ecosystem management regimes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite extensive research since pathogenicity was first established in 1919, no cultural or chemical control strategy has proven effective against Fusarium wilt of bananas. The efficacy of cultural control is attributed to the suppression of pathogen activity. Yet, amending naturally infested soil with aged chicken manure has been shown to enhance disease severity, without any change in the activity of the pathogen Fusarium oxysporum f. sp. cubense (Foc) in the soil. In this study, the effect of amending soil with composted sawdust, and of solarising soil, was compared with the effect of amending soil with chicken manure. Bioassays comparing the activity of Foc in the soil with the extent of invasion of banana pseudostem tissue by Foc were used to investigate why strategies targetting pathogen survival have not proven successful in controlling this disease. The enhancement of Foc invasion of the banana plantlets was reproduced with the addition of chicken manure to the naturally infested soil. However, changes in the activity of Foc in the soil were not associated with changes in the frequency of invasion of the plantlets. Invasion of banana pseudostems in the sawdust and solarisation treatments was not significantly different from invasion in the respective control treatments, despite a reduction in the activity of Foc in the sawdust-amended soil and an enhancement in the solarised soil. Moreover, the increase in Foc activity in the solarised soil recorded during the bioassays occurred despite the effectiveness of solarisation in reducing the survival of Foc in pre-colonised banana root tips buried in the soil. Changes in the frequency of invasion were associated with changes in the availability of mineral nitrogen, particularly ammonium N. These results suggest that the physiological response of banana cultivars to ammonium N may be associated with their susceptibility to Fusarium wilt. Accordingly, cultural strategies for controlling Panama disease will only be effective if they enhance the ability of the host to resist invasion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical properties of deep profile samples ( up to 12 m) of Ferrosols from northern Queensland were investigated to provide an understanding of the accumulation of nitrate ( NO3) within these soil profiles. The influence of other cations and anions present in the soil solution or on the exchange and the charge chemistry of the profiles were examined with respect to the NO3 accumulations. The major ions in the soil solution were Na, NO3, and chloride ( Cl). Distinct regions of anion accumulation were observed; SO4 accumulated in the upper profile of all cores, whereas NO3 and Cl accumulations were restricted to the lower profile of cores with appreciable AEC (> 1 cmol(c)/kg). Gaines-Thomas selectivity coefficients were used to indicate exchange preference for cations and anions, and are as follows: Al > Ca similar to Mg > K > Na and sulfate (SO4) > Cl similar to NO3. The selectivity of SO4 increased and the extractable SO4 decreased in the lower profile of all cores. This has important implications for the adsorption of NO3 and Cl. The NO3 and Cl accumulations were shown to correspond to a region of low SO4 occupancy of the exchange sites in the lower profile. Along with the high SO4 selectivity, this suggests that SO4 may control the positioning of the NO3 accumulations. It was concluded that the NO3 accumulations were relatively stable under current management practices, although the reduction in NO3 inputs would likely see the gradual replacement of NO3 with Cl as a result of their comparable selectivity for exchange sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An atmospheric aerosol study was performed in 2008 inside an urban road tunnel, in Lisbon, Portugal. Using a high volume impactor, the aerosol was collected into four size fractions (PM0.5, PM0.5-1, PM1-2.5 and PM2.5-10) and analysed for particle mass (PM), organic and elemental carbon (OC and EC), polycyclic aromatic hydrocarbons (PAH), soluble inorganic ions and elemental composition. Three main groups of compounds were discriminated in the tunnel aerosol: carbonaceous, soil component and vehicle mechanical wear. Measurements indicate that Cu can be a good tracer for wear emissions of road traffic. Cu levels correlate strongly with Fe, Mn, Sn and Cr, showing a highly linear constant ratio in all size ranges, suggesting a unique origin through sizes. Ratios of Cu with other elements can be used to source apportion the trace elements present in urban atmospheres, mainly on what concerns coarse aerosol particles. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Total petroleum hydrocarbons (TPH) are important environmental contaminants which are toxic to human and environmental receptors. Several analytical methods have been used to quantify TPH levels in contaminated soils, specifically through infrared spectrometry (IR) and gas chromatography (GC). Despite being two of the most used techniques, some issues remain that have been inadequately studied: a) applicability of both techniques to soils contaminated with two distinct types of fuel (petrol and diesel), b) influence of the soil natural organic matter content on the results achieved by various analytical methods, and c) evaluation of the performance of both techniques in analyses of soils with different levels of contamination (presumably non-contaminated and potentially contaminated). The main objectives of this work were to answer these questions and to provide more complete information about the potentials and limitations of GC and IR techniques. The results led us to the following conclusions: a) IR analysis of soils contaminated with petrol is not suitable due to volatilisation losses, b) there is a significant influence of organic matter in IR analysis, and c) both techniques demonstrated the capacity to accurately quantify TPH in soils, irrespective of their contamination levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important measures to prevent wild forest fires is the use of prescribed and controlled burning actions as it reduce the fuel mass availability. The impact of these management activities on soil physical and chemical properties varies according to the type of both soil and vegetation. Decisions in forest management plans are often based on the results obtained from soil-monitoring campaigns. Those campaigns are often man-labor intensive and expensive. In this paper we have successfully used the multivariate statistical technique Robust Principal Analysis Compounds (ROBPCA) to investigate on the sampling procedure effectiveness for two different methodologies, in order to reflect on the possibility of simplifying and reduce the sampling collection process and its auxiliary laboratory analysis work towards a cost-effective and competent forest soil characterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intent of this dissertation is to review relevant existing management systems and chemical industry initiatives to identify synergies, overlaps and gaps with Sustainability best practices, to map the barriers to the incorporation of Sustainability and formulate recommendations to facilitate execution of Sustainability practices within existing management systems. A chemical industry Sustainability survey was conducted through APEQ, the Portuguese association of chemical companies, which constitutes the first baseline on the topic for this national industry association. The commonly used international standards and the Responsible Care® (RC) initiative were cross-referenced against the United Nations Global Compact Assessment Tool. Guidance on how to incorporate Sustainability into a company‘s modus operandi was collapsed into Sustainability Playbooks. The survey revealed that 73% of the APEQ member companies that participated in the survey have a Sustainability Plan. Both large and small/medium APEQ member companies see the market not willing to pay extra for ‗greener‘ products as one of the main barriers. APEQ large enterprise see complexity of implementation and low return on investment as the other most significant barriers while small/medium enterprise respond that the difficulty to predict customer sustainability needs is the other most significant barrier. Amongst many other insights from this survey reported to APEQ, Life Cycle Assessment practices were found to have a low level of implementation and were also considered of low importance, thus identifying a very important opportunity in Sustainability practices to be addressed by APEQ. Two hundred and seventy three assessment points from United Nations Global Compact Assessment Tool plus five additional items were cross-referenced with international standard requirements. With the authorization of the intellectual property owners, the United Nations Global Compact Assessment Tool was modified to introduce actionable recommendations for each gap identified by management standard. This tool was automated to output specific recommendations for 63 possible combinations after simply selecting from a list of commonly used management standards and the RC initiative. Finally this modified tool was introduced into Playbooks for Incorporation of Sustainability at two levels: a ―Get Started Playbook‖ for beginners or small/medium size enterprise and an ―Advanced Playbook‖ as a second advancement stage or for large enterprise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to decrease the risk of severe wildfire, prescribed fire has recently been adopted in Portugal and elsewhere in the Mediterranean as a major tool for reducing the fuel load instead of manual or mechanical removal of vegetation. There has been some research into its impact on soils in shrublands and grasslands, but to date little research has been conducted in forested areas in the region. As a result, the impact of prescribed fire on the physico-chemical soil characteristics of forest soils has been assumed to be minimal, but this has not been demonstrated. In this study, we present the results of a monitoring campaign of a detailed pre- and post-prescribed fire assessment of soil properties in a long-unburnt P. pinaster plantation, NW Portugal. The soil characteristics examined were pH, total porosity, bulk density, moisture content, organic matter content and litter/ash quantity. The results show that there was no significant impact on the measured soil properties, the only effect being confined to minor changes in the upper 1 cm of soil. We conclude that provided the fire is carried out according to strict guidelines in P. pinaster forest, a minimal impact on soil properties can be expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ready biodegradability of four chelating agents, N,N -(S,S)-bis[1-carboxy-2-(imidazol-4-yl)ethyl]ethylenediamine (BCIEE), N - ethylenedi-L-cysteine (EC), N,N -bis (4-imidazolymethyl)ethylenediamine (EMI) and 2,6-pyridine dicarboxylic acid (PDA), was tested according to the OECD guideline for testing of chemicals. PDA proved to be a readily biodegradable substance. However, none of the other three compounds were degraded during the 28 days of the test. Chemical simulations were performed for the four compounds in order to understand their ability to complex with some metal ions (Ca, Cd, Co, Cu, Fe, Mg, Mn, Ni, Pb, Zn) and discuss possible applications of these chelating agents. Two different conditions were simulated: (i) in the presence of the chelating agent and one metal ion, and (ii) in the simultaneous presence of the chelating agent and all metal ions with an excess of Ca. For those compounds that were revealed not to be readily biodegradable (BCIEE, EC and EMI), applications were evaluated where this property was not fundamental or even not required. Chemical simulations pointed out that possible applications for these chelating agents are: food fortification, food process, fertilizers, biocides, soil remediation and treatment of metal poisoning. Additionally, chemical simulations also predicted that PDA is an efficient chelating agent for Ca incrustations removal, detergents and for pulp metal ions removal process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to decrease the risk of severe wildfire, prescribed fire has recently been adopted in Portugal and elsewhere in the Mediterranean as a major tool for reducing the fuel load instead of manual or mechanical removal of vegetation. There has been some research into its impact on soils in shrublands and grasslands, but to date little research has been conducted in forested areas in the region. As a result, the impact of prescribed fire on the physico-chemical soil characteristics of forest soils has been assumed to be minimal, but this has not been demonstrated. In this study, we present the results of a monitoring campaign of a detailed pre- and post-prescribed fire assessment of soil properties in a long-unburnt P. pinaster plantation, NW Portugal. The soil characteristics examined were pH, total porosity, bulk density, moisture content, organic matter content and litter/ash quantity. The results show that there was no significant impact on the measured soil properties, the only effect being confined to minor changes in the upper 1 cm of soil. We conclude that provided the fire is carried out according to strict guidelines in P. pinaster forest, a minimal impact on soil properties can be expected.