802 resultados para smart meters
Resumo:
Many industries and academic institutions share the vision that an appropriate use of information originated from the environment may add value to services in multiple domains and may help humans in dealing with the growing information overload which often seems to jeopardize our life. It is also clear that information sharing and mutual understanding between software agents may impact complex processes where many actors (humans and machines) are involved, leading to relevant socioeconomic benefits. Starting from these two input, architectural and technological solutions to enable “environment-related cooperative digital services” are here explored. The proposed analysis starts from the consideration that our environment is physical space and here diversity is a major value. On the other side diversity is detrimental to common technological solutions, and it is an obstacle to mutual understanding. An appropriate environment abstraction and a shared information model are needed to provide the required levels of interoperability in our heterogeneous habitat. This thesis reviews several approaches to support environment related applications and intends to demonstrate that smart-space-based, ontology-driven, information-sharing platforms may become a flexible and powerful solution to support interoperable services in virtually any domain and even in cross-domain scenarios. It also shows that semantic technologies can be fruitfully applied not only to represent application domain knowledge. For example semantic modeling of Human-Computer Interaction may support interaction interoperability and transformation of interaction primitives into actions, and the thesis shows how smart-space-based platforms driven by an interaction ontology may enable natural ad flexible ways of accessing resources and services, e.g, with gestures. An ontology for computational flow execution has also been built to represent abstract computation, with the goal of exploring new ways of scheduling computation flows with smart-space-based semantic platforms.
Resumo:
Abstract (English) Cities nowadays face complex challenges to meet objectives regarding socio-economic development and quality of life. The concept of "smart city" is a response to these challenges. Although common practices are being developed all over the world, different priorities are defined and different architectures are followed. In this master thesis I focuses on the applied architecture of Riverside's case study, through a progression model that underline the main steps that moves the city from a situation of crisis, to be appointed "Intelligent Community" of the 2012 by Intelligent Community Forum. I discuss the problem of integration among the physical, institutional and digital dimension of smart cities and the "bridges" that connect these three spatialities. Riverside's progression model takes as a reference a comprehensive framework made unifying the keys component of the three most quoted framework in this field: a technology-oriented vision (strongly promoted by IBM [Dirks et al. 2009]), an approach-oriented one [Schaffers et al. 2011] that is sponsored by many initiatives within the European Commission, and a purely service-oriented one [Giffinger et al. 2007][Toppeta, 2010].
Resumo:
n the last few years, the vision of our connected and intelligent information society has evolved to embrace novel technological and research trends. The diffusion of ubiquitous mobile connectivity and advanced handheld portable devices, amplified the importance of the Internet as the communication backbone for the fruition of services and data. The diffusion of mobile and pervasive computing devices, featuring advanced sensing technologies and processing capabilities, triggered the adoption of innovative interaction paradigms: touch responsive surfaces, tangible interfaces and gesture or voice recognition are finally entering our homes and workplaces. We are experiencing the proliferation of smart objects and sensor networks, embedded in our daily living and interconnected through the Internet. This ubiquitous network of always available interconnected devices is enabling new applications and services, ranging from enhancements to home and office environments, to remote healthcare assistance and the birth of a smart environment. This work will present some evolutions in the hardware and software development of embedded systems and sensor networks. Different hardware solutions will be introduced, ranging from smart objects for interaction to advanced inertial sensor nodes for motion tracking, focusing on system-level design. They will be accompanied by the study of innovative data processing algorithms developed and optimized to run on-board of the embedded devices. Gesture recognition, orientation estimation and data reconstruction techniques for sensor networks will be introduced and implemented, with the goal to maximize the tradeoff between performance and energy efficiency. Experimental results will provide an evaluation of the accuracy of the presented methods and validate the efficiency of the proposed embedded systems.
Resumo:
In piattaforme di Stream Processing è spesso necessario eseguire elaborazioni differenziate degli stream di input. Questa tesi ha l'obiettivo di realizzare uno scheduler in grado di attribuire priorità di esecuzione differenti agli operatori deputati all'elaborazione degli stream.
Resumo:
Il concetto di Smart City ha iniziato a svilupparsi negli ultimi anni, acquisendo un'importanza sempre maggiore anche in seguito ai cambiamenti sociali e tecnologici dell'ultimo periodo. La tesi si concentra sull'analisi della situazione italiana per quanto riguarda questo tema, cercando di capire quali sfide dovranno affrontare le città italiane per fronteggiare i cambiamenti in atto; si è quindi cercato di rispondere a questa domanda sviluppando tre delle principali aree tematiche che contribuiscono a definire il concetto di Smart City: Smart Mobility, Smart Waste Management e Smart Water Management; ne vengono quindi analizzate le maggiori criticità e i vantaggi, sia economici che ambientali, che si potrebbero ottenere attraverso una gestione più efficiente di questi settori.
Resumo:
The wide diffusion of cheap, small, and portable sensors integrated in an unprecedented large variety of devices and the availability of almost ubiquitous Internet connectivity make it possible to collect an unprecedented amount of real time information about the environment we live in. These data streams, if properly and timely analyzed, can be exploited to build new intelligent and pervasive services that have the potential of improving people's quality of life in a variety of cross concerning domains such as entertainment, health-care, or energy management. The large heterogeneity of application domains, however, calls for a middleware-level infrastructure that can effectively support their different quality requirements. In this thesis we study the challenges related to the provisioning of differentiated quality-of-service (QoS) during the processing of data streams produced in pervasive environments. We analyze the trade-offs between guaranteed quality, cost, and scalability in streams distribution and processing by surveying existing state-of-the-art solutions and identifying and exploring their weaknesses. We propose an original model for QoS-centric distributed stream processing in data centers and we present Quasit, its prototype implementation offering a scalable and extensible platform that can be used by researchers to implement and validate novel QoS-enforcement mechanisms. To support our study, we also explore an original class of weaker quality guarantees that can reduce costs when application semantics do not require strict quality enforcement. We validate the effectiveness of this idea in a practical use-case scenario that investigates partial fault-tolerance policies in stream processing by performing a large experimental study on the prototype of our novel LAAR dynamic replication technique. Our modeling, prototyping, and experimental work demonstrates that, by providing data distribution and processing middleware with application-level knowledge of the different quality requirements associated to different pervasive data flows, it is possible to improve system scalability while reducing costs.
Resumo:
La ludicizzazione (deriv. Gamification) è l’utilizzo delle dinamiche proprie dei giochi, quali livelli, punti o premi, in contesti che, senza di essa, non avrebbero alcuna caratteristica di tipo ludico. Il suo principale scopo è quello di ridurre la percezione di compiere azioni noiose, routinarie e ripetitive focalizzando l'attenzione sul maggiore coinvolgimento e divertimento degli utenti. Il campo di applicazione della ludicizzazione è potenzialmente sconfinato. Sono numerose le aziende che investono su processi di produzione mirati all'attribuzione di una caratteristica ludica ai propri prodotti, allo scopo di aumentare la soddisfazione e la fedeltà dei clienti finali. In questo senso, anche il settore del turismo ha iniziato ad introdurre strumenti e tecnologie "ludicizzate", in grado di valorizzare maggiormente le risorse monumentali e fornire al turista un'esperienza completamente nuova e rinnovata. Il presente studio analizza in primis gli aspetti fondamentali del processo di ludicizzazione di un generico sistema o prodotto. Nella seconda parte dell'elaborato, invece, viene illustrata l'applicazione di tali principi per la progettazione di un'applicazione Android il cui scopo è fornire una guida interattiva della città di Bologna basata sulla ludicizzazione.
Resumo:
Intervento di recupero sostenibile a Bertinoro su edificio del centro storico. Il progetto prevede la rifunzionalizzazione e la riqualificazione energetica del complesso edilizio.
Resumo:
The present dissertation aims to explore, theoretically and experimentally, the problems and the potential advantages of different types of power converters for “Smart Grid” applications, with particular emphasis on multi-level architectures, which are attracting a rising interest even for industrial requests. The models of the main multilevel architectures (Diode-Clamped and Cascaded) are shown. The best suited modulation strategies to function as a network interface are identified. In particular, the close correlation between PWM (Pulse Width Modulation) approach and SVM (Space Vector Modulation) approach is highlighted. An innovative multilevel topology called MMC (Modular Multilevel Converter) is investigated, and the single-phase, three-phase and "back to back" configurations are analyzed. Specific control techniques that can manage, in an appropriate way, the charge level of the numerous capacitors and handle the power flow in a flexible way are defined and experimentally validated. Another converter that is attracting interest in “Power Conditioning Systems” field is the “Matrix Converter”. Even in this architecture, the output voltage is multilevel. It offers an high quality input current, a bidirectional power flow and has the possibility to control the input power factor (i.e. possibility to participate to active and reactive power regulations). The implemented control system, that allows fast data acquisition for diagnostic purposes, is described and experimentally verified.
Resumo:
The aim of this thesis is the elucidation of structure-properties relationship of molecular semiconductors for electronic devices. This involves the use of a comprehensive set of simulation techniques, ranging from quantum-mechanical to numerical stochastic methods, and also the development of ad-hoc computational tools. In more detail, the research activity regarded two main topics: the study of electronic properties and structural behaviour of liquid crystalline (LC) materials based on functionalised oligo(p-phenyleneethynylene) (OPE), and the investigation on the electric field effect associated to OFET operation on pentacene thin film stability. In this dissertation, a novel family of substituted OPE liquid crystals with applications in stimuli-responsive materials is presented. In more detail, simulations can not only provide evidence for the characterization of the liquid crystalline phases of different OPEs, but elucidate the role of charge transfer states in donor-acceptor LCs containing an endohedral metallofullerene moiety. Such systems can be regarded as promising candidates for organic photovoltaics. Furthermore, exciton dynamics simulations are performed as a way to obtain additional information about the degree of order in OPE columnar phases. Finally, ab initio and molecular mechanics simulations are used to investigate the influence of an applied electric field on pentacene reactivity and stability. The reaction path of pentacene thermal dimerization in the presence of an external electric field is investigated; the results can be related to the fatigue effect observed in OFETs, that show significant performance degradation even in the absence of external agents. In addition to this, the effect of the gate voltage on a pentacene monolayer are simulated, and the results are then compared to X-ray diffraction measurements performed for the first time on operating OFETs.
Resumo:
A Smart City is a high-performance urban context, where citizens live independently and are more aware of the surrounding opportunities, thanks to forward-looking development of economy politics, governance, mobility and environment. ICT infrastructures play a key-role in this new research field being also a mean for society to allow new ideas to prosper and new, more efficient approaches to be developed. The aim of this work is to research and develop novel solutions, here called smart services, in order to solve several upcoming problems and known issues in urban areas and more in general in the modern society context. A specific focus is posed on smart governance and on privacy issues which have been arisen in the cellular age.
Resumo:
This thesis is focused on Smart Grid applications in medium voltage distribution networks. For the development of new applications it appears useful the availability of simulation tools able to model dynamic behavior of both the power system and the communication network. Such a co-simulation environment would allow the assessment of the feasibility of using a given network technology to support communication-based Smart Grid control schemes on an existing segment of the electrical grid and to determine the range of control schemes that different communications technologies can support. For this reason, is presented a co-simulation platform that has been built by linking the Electromagnetic Transients Program Simulator (EMTP v3.0) with a Telecommunication Network Simulator (OPNET-Riverbed v18.0). The simulator is used to design and analyze a coordinate use of Distributed Energy Resources (DERs) for the voltage/var control (VVC) in distribution network. This thesis is focused control structure based on the use of phase measurement units (PMUs). In order to limit the required reinforcements of the communication infrastructures currently adopted by Distribution Network Operators (DNOs), the study is focused on leader-less MAS schemes that do not assign special coordinating rules to specific agents. Leader-less MAS are expected to produce more uniform communication traffic than centralized approaches that include a moderator agent. Moreover, leader-less MAS are expected to be less affected by limitations and constraint of some communication links. The developed co-simulator has allowed the definition of specific countermeasures against the limitations of the communication network, with particular reference to the latency and loss and information, for both the case of wired and wireless communication networks. Moreover, the co-simulation platform has bee also coupled with a mobility simulator in order to study specific countermeasures against the negative effects on the medium voltage/current distribution network caused by the concurrent connection of electric vehicles.
Resumo:
La tesi consiste nel realizzare una infrastruttura che mantenga il modello tipico dello Spatial Computing e coniughi al meglio le tecnologie location-based come GPS, NFC e BLE, per permettere ai moderni smart-devices Android di cooperare e auto-organizzarsi al fine di compiere un certo task definito a livello applicativo.