815 resultados para single-frequency fiber amplifier
Resumo:
We report a theoretical study and simulations of a novel fiber-spin tailoring technique to suppress the polarization impairments, namely polarization mode dispersion and polarization dependent gain (PDG), in fiber Raman amplifiers. Whereas use of depolarizer or multiplexing pump laser diodes with a final degree of pump polarization of 1% for periodically spun fiber results in PDG of about 0.3 dB, we demonstrate that application of just a two-section fiber (where the first part is short and has no spin, and the second one is periodically spun) can reduce the PDG to as low as below 0.1 dB.
Resumo:
We have reduced signal-signal four-wave mixing crosstalk in a fiber optical parametric amplifier (OPA) by using a short nonlinear fiber for the gain medium and a high-power pump. This allowed us to obtain less than 1 dB penalty for amplification of 26 dense wavelength-division multiplexed (WDM) channels modulated at 43.7Gb/s return to zero-differential phase-shift keying, with the OPA placed between transmitter and receiver. We then used the same OPA in several different roles for a long-haul transmission system. We did not insert the OPA within the loop, but investigated this role indirectly by using equivalent results for small numbers of loop recirculations. We found that standard erbium-doped fiber amplifiers currently hold an advantage over this OPA, which becomes negligible for long distances. This paper shows that at this time OPAs can handle amplification of WDM traffic in excess of 1 Tb/s with little degradation. It also indicates that with further improvements, fiber OPAs could be a contender for wideband amplification in future optical communication networks.
Resumo:
We report less than 1-dB cross-talk penalty for 26 DWDM channels modulated at 43.7 Gb/s RZ-DPSK when amplified by a fiber optical parametric amplifier showing compatibility with high-capacity (> 1 Tb/s) communication systems. © 2010 Optical Society of America.
Resumo:
We report high-capacity (> 1 Tb/s) amplification by a fiber optical parametric amplifier in different roles displaying compatibility and versatility in future WDM networks with phase-shift keying modulation format.
Resumo:
We present the development of superstructure fiber gratings (SFG) in Ge-doped, silica optical fiber using femtosecond laser inscription. We apply a simple but extremely effective single step process to inscribe low loss, sampled gratings with minor polarization dependence. The method results in a controlled modulated index change with complete suppression of mode coupling associated with the overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. The devices are characterized and compared with numerical modeling by solving Maxwell's equations and calculating the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis, allowing for the estimation of inscription parameters such as the ac index modulation change, and the wavelength, position and relative strength of each significant resonance peak. We also present results on temperature and refractive index measurements showing potential for sensing applications.
Resumo:
A sequence of constant-frequency tones can promote streaming in a subsequent sequence of alternating-frequency tones, but why this effect occurs is not fully understood and its time course has not been investigated. Experiment 1 used a 2.0-s-long constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence substantially reduced reported test-sequence segregation. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets build-up, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only three tones—this contrasts with the more gradual build-up typically observed for alternating-frequency sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ~10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an ongoing, preestablished stream, and that a deviant tone may reduce segregation by disrupting this capture. These findings offer new insight into the dynamics of stream segregation, and have implications for the neural basis of streaming and the role of attention in stream formation. (PsycINFO Database Record (c) 2013 APA, all rights reserved)
Resumo:
An all-fiber normal-dispersion Yb-doped fiber laser with 45- tilted fiber grating (TFG) isto the best of our knowledgeexperimentally demonstrated for the first time. Stable linearly-chirped pulses with the duration of 4 ps and the bandwidth of 9 nm can be directly generated from the laser cavity. By employing the 45 TFG with the polarization-dependent loss of 33 dBoutput pulses with high polarization extinction ratio of 26 dB are implemented in the experiment. Our result shows that the 45 TFG can work effectively as a polarizerwhich could be exploited to singlepolarization all-fiber lasers.
Resumo:
A high frequency sensing interrogation system by using fiber Bragg grating based microwave photonic filtering is proposed, in which the wavelength measurement sensitivity is proportional to the RF modulation frequency applied to the optical signal.
Resumo:
We report less than 1-dB cross-talk penalty for 26 DWDM channels modulated at 43.7 Gb/s RZ-DPSK when amplified by a fiber optical parametric amplifier showing compatibility with high-capacity (> 1 Tb/s) communication systems. © 2010 Optical Society of America.
Resumo:
Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.
Resumo:
We present the development of superstructure fiber gratings (SFG) in Ge-doped, silica optical fiber using femtosecond laser inscription. We apply a simple but extremely effective single step process to inscribe low loss, sampled gratings with minor polarization dependence. The method results in a controlled modulated index change with complete suppression of mode coupling associated with the overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. The devices are characterized and compared with numerical modeling by solving Maxwell's equations and calculating the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis, allowing for the estimation of inscription parameters such as the ac index modulation change, and the wavelength, position and relative strength of each significant resonance peak. We also present results on temperature and refractive index measurements showing potential for sensing applications.
Resumo:
We report high-capacity (> 1 Tb/s) amplification by a fiber optical parametric amplifier in different roles displaying compatibility and versatility in future WDM networks with phase-shift keying modulation format.
Resumo:
A sequence of constant-frequency tones can promote streaming in a subsequent sequence of alternating-frequency tones, but why this effect occurs is not fully understood and its time course has not been investigated. Experiment 1 used a 2.0-s-long constant-frequency inducer (10 repetitions of a low-frequency pure tone) to promote segregation in a subsequent, 1.2-s test sequence of alternating low- and high-frequency tones. Replacing the final inducer tone with silence substantially reduced reported test-sequence segregation. This reduction did not occur when either the 4th or 7th inducer was replaced with silence. This suggests that a change at the induction/test-sequence boundary actively resets build-up, rather than less segregation occurring simply because fewer inducer tones were presented. Furthermore, Experiment 2 found that a constant-frequency inducer produced its maximum segregation-promoting effect after only three tones—this contrasts with the more gradual build-up typically observed for alternating-frequency sequences. Experiment 3 required listeners to judge continuously the grouping of 20-s test sequences. Constant-frequency inducers were considerably more effective at promoting segregation than alternating ones; this difference persisted for ~10 s. In addition, resetting arising from a single deviant (longer tone) was associated only with constant-frequency inducers. Overall, the results suggest that constant-frequency inducers promote segregation by capturing one subset of test-sequence tones into an ongoing, preestablished stream, and that a deviant tone may reduce segregation by disrupting this capture. These findings offer new insight into the dynamics of stream segregation, and have implications for the neural basis of streaming and the role of attention in stream formation. (PsycINFO Database Record (c) 2013 APA, all rights reserved)
Resumo:
Using the integrable nonlinear Schrodinger equation (NLSE) as a channel model, we describe the application of nonlinear spectral management for effective mitigation of all nonlinear distortions induced by the fiber Kerr effect. Our approach is a modification and substantial development of the so-called eigenvalue communication idea first presented in A. Hasegawa, T. Nyu, J. Lightwave Technol. 11, 395 (1993). The key feature of the nonlinear Fourier transform (inverse scattering transform) method is that for the NLSE, any input signal can be decomposed into the so-called scattering data (nonlinear spectrum), which evolve in a trivial manner, similar to the evolution of Fourier components in linear equations. We consider here a practically important weakly nonlinear transmission regime and propose a general method of the effective encoding/modulation of the nonlinear spectrum: The machinery of our approach is based on the recursive Fourier-type integration of the input profile and, thus, can be considered for electronic or all-optical implementations. We also present a novel concept of nonlinear spectral pre-compensation, or in other terms, an effective nonlinear spectral pre-equalization. The proposed general technique is then illustrated through particular analytical results available for the transmission of a segment of the orthogonal frequency division multiplexing (OFDM) formatted pattern, and through WDM input based on Gaussian pulses. Finally, the robustness of the method against the amplifier spontaneous emission is demonstrated, and the general numerical complexity of the nonlinear spectrum usage is discussed. © 2013 Optical Society of America.
Resumo:
An all-fiber normal-dispersion Yb-doped fiber laser with 45- tilted fiber grating (TFG) isto the best of our knowledgeexperimentally demonstrated for the first time. Stable linearly-chirped pulses with the duration of 4 ps and the bandwidth of 9 nm can be directly generated from the laser cavity. By employing the 45 TFG with the polarization-dependent loss of 33 dBoutput pulses with high polarization extinction ratio of 26 dB are implemented in the experiment. Our result shows that the 45 TFG can work effectively as a polarizerwhich could be exploited to singlepolarization all-fiber lasers.