960 resultados para similarity queries
Resumo:
This study used allozyme and mitochondrial DNA variation to examine genetic structure in the Oxleyan Pygmy Perch Nannoperca oxleyana. This small-bodied freshwater fish has a very restricted distribution occurring only in some small coastal streams in south-east Queensland and northern New South Wales. It was expected that subpopulations may contain little genetic variation and be highly differentiated from one another. The results, based on allozyme and mitochondrial DNA control region variation were in agreement with these expectations. Allozyme variation was very low overall, with only one locus showing variation at most sites. The high differentiation was because a different locus tended to be polymorphic at each site. Mitochondrial variation within sites was also low, but some sites had unique haplotypes. The patterns of similarity among mitochondrial DNA haplotypes were not as expected from geographical proximity alone. In particular, although some northern sites had unique haplotypes, four sites spread along 200 km of coastline were remarkably similar, sharing the same common haplotype at similar frequencies. We suggest that these four streams may have had a confluence relatively recently, possibly when sea levels were lower, 8000-10 000 BP.
Resumo:
MiAMP1 is a recently discovered 76 amino acid residue, highly basic protein from the nut kernel of:Macadamia integrifolia which possesses no sequence homology to any known protein and inhibits the growth of several microbial plant pathogens in vitro while having no effect on mammalian or plant cells. It is considered to be a potentially useful tool for the genetic engineering of disease resistance in transgenic crop plants and for the design of new fungicides. The three-dimensional structure of MiAMP1 was determined through homonuclear and heteronuclear (N-15) 2D NMR spectroscopy and subsequent simulated annealing calculations with the ultimate aim of understanding the structure-activity relationships of the protein. MiAMP1 is made up of eight beta-strands which are arranged in two Greek key motifs. These Greek key motifs associate to form a Greek key beta-barrel. This structure is unique amongst plant antimicrobial proteins and forms a new class which we term the beta-barrelins. Interestingly, the structure of MiAMP1 bears remarkable similarity to a yeast killer toxin from Williopsis mrakii. This toxin acts by inhibiting beta-glucan synthesis and thereby cell wall construction in sensitive strains of yeast. The structural similarity of MiAMP1 and WmKT, which originate from plant and fungal phyla respectively, may reflect a similar mode of action. (C) 1999 Academic Press.
Resumo:
A new species of the genus Gluconacetobacter, for which the name Gluconacetobacter sacchari sp. nov. is proposed, was isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug, Saccharicoccus sacchari, found on sugar cane growing in Queensland and northern New South Wales, Australia, The nearest phylogenetic relatives in the alpha-subclass of the Proteobacteria are Gluconacetobacter liquefaciens and Gluconacetobacter diazotrophicus, which have 98.8-99.3% and 97.9-98.5% 16S rDNA sequence similarity, respectively, to members of Gluconacetobacter sacchari. On the basis of the phylogenetic positioning of the strains, DNA reassociation studies, phenotypic tests and the presence of the Q10 ubiquinone, this new species was assigned to the genus Gluconacetobacter. No single phenotypic characteristic is unique to the species, but the species can be differentiated phenotypically from closely related members of the acetic acid bacteria by growth in the presence of 0.01% malachite green, growth on 30% glucose, an inability to fix nitrogen and an inability to grow with the L-amino acids asparagine, glycine, glutamine, threonine and tryptophan when D-mannitol was supplied as the sole carbon and energy source. The type strain of this species is strain SRI 1794(T) (= DSM 12717(T)).
Resumo:
Recent structural studies of proteins mediating membrane fusion reveal intriguing similarities between diverse viral and mammalian systems. Particularly striking is the close similarity between the transmembrane envelope glycoproteins from the retrovirus HTLV-1 and the filovirus Ebola. These similarities suggest similar mechanisms of membrane fusion. The model that fits most currently available data suggests fusion activation in viral systems is driven by a symmetrical conformational change triggered by an activation event such as receptor binding or a pH change. The mammalian vesicle fusion mediated by the SNARE protein complex most likely occurs by a similar mechanism but without symmetry constraints.
Resumo:
The development of large-scale solid-stale fermentation (SSF) processes is hampered by the lack of simple tools for the design of SSF bioreactors. The use of semifundamental mathematical models to design and operate SSF bioreactors can be complex. In this work, dimensionless design factors are used to predict the effects of scale and of operational variables on the performance of rotating drum bioreactors. The dimensionless design factor (DDF) is a ratio of the rate of heat generation to the rate of heat removal at the time of peak heat production. It can be used to predict maximum temperatures reached within the substrate bed for given operational variables. Alternatively, given the maximum temperature that can be tolerated during the fermentation, it can be used to explore the combinations of operating variables that prevent that temperature from being exceeded. Comparison of the predictions of the DDF approach with literature data for operation of rotating drums suggests that the DDF is a useful tool. The DDF approach was used to explore the consequences of three scale-up strategies on the required air flow rates and maximum temperatures achieved in the substrate bed as the bioreactor size was increased on the basis of geometric similarity. The first of these strategies was to maintain the superficial flow rate of the process air through the drum constant. The second was to maintain the ratio of volumes of air per volume of bioreactor constant. The third strategy was to adjust the air flow rate with increase in scale in such a manner as to maintain constant the maximum temperature attained in the substrate bed during the fermentation. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Objective: To compare secular trends in method-specific suicide rates among young people in Australia and England & Wales between 1968 and 1997. Methods: Australian data were obtained from the Australian Bureau of Statistics, and for England & Wales from the Office for National Statistics. Overall and method-specific suicide rates for 15-34 year old males and females were calculated using ICD codes E950-9 and E980-9 except E988.8. Results: In both settings, suicide rates have almost doubled in young males over the past 30 years (from 16.8 to 32.9 per 100,000 in Australia and from 10.1 to 19.0 in England & Wales). Overall rates have changed little in young females. In both sexes and in both settings there have been substantial increases in suicide by hanging (5-7 fold increase in Australia and four-fold increase in England & Wales). There have also been smaller increases in gassing in the 1980s and '90s. In females, the impact of these increases on overall rates has been offset by a decline in drug overdose, the most common method in females. Conclusions: Rates of male suicide have increased substantially in both settings in recent years, and hanging has become an increasingly common method of suicide. The similarity in observed trends in both settings supports the view that such changes may have common causes. Research should focus on understanding why hanging has increased in popularity and what measures may be taken to diminish it.
Resumo:
The aim of the present research was to provide school psychologists with valid instruments with which to assess the goals and reputations of young children. This was achieved by ascertaining whether the factor structures and the second-order factor models of the high school versions of the Importance of Goals (Carroll, et al., 1997) and Reputation Enhancement Scales (Carroll, et al., 1999) could be replicated with a primary school sample. Eight hundred and eighty-six 10 to 12 year old children were administered modified versions of the two scales, which were combined and renamed the Children's Activity Questionnaire. For the two scales, the factor structure proved replicable and reliable with the primary school sample. A comparison between the factor loadings of the primary school and the high school samples using the coefficient of congruence procedure demonstrated similarity indicating that the scales are replicable and able to be used with a younger primary school sample. Structural equation modelling indicated that the second-order factor structure of the Importance of Goals Scale was acceptable but this was not the case for the second-order factor structure of the Reputation Enhancement Scale.
Resumo:
This paper develops an interactive approach for exploratory spatial data analysis. Measures of attribute similarity and spatial proximity are combined in a clustering model to support the identification of patterns in spatial information. Relationships between the developed clustering approach, spatial data mining and choropleth display are discussed. Analysis of property crime rates in Brisbane, Australia is presented. A surprising finding in this research is that there are substantial inconsistencies in standard choropleth display options found in two widely used commercial geographical information systems, both in terms of definition and performance. The comparative results demonstrate the usefulness and appeal of the developed approach in a geographical information system environment for exploratory spatial data analysis.
Resumo:
Transposon mutagenesis and complementation studies previously identified a gene (xabB) for a large (526 kDa) polyketide-peptide synthase required for biosynthesis of albicidin antibiotics and phytotoxins in the sugarcane leaf scald pathogen Xanthomonas albilineans. A cistron immediately downstream from xabB encodes a polypeptide of 343 aa containing three conserved motifs characteristic of a family of S-adenosyl-L-methionine (SAM)-dependent O-methyltransferases. Insertional mutagenesis and complementation indicate that the product of this cistron (designated xabC) is essential for albicidin production, and that there is no other required downstream cistron. The xab promoter region is bidirectional, and insertional mutagenesis of the first open reading frame (ORF) in the divergent gene also blocks albicidin biosynthesis. This divergent ORF (designated thp) encodes a protein of 239 aa displaying high similarity to several IS21-like transposition helper proteins. The thp cistron is not located in a recognizable transposon, and is probably a remnant from a past transposition event that may have contributed to the development of the albicidin biosynthetic gene cluster. Failure of 'in trans' complementation of rhp indicates that a downstream cistron transcribed with thp is required for albicidin biosynthesis. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Genetic variation among Australian isolates of the fungus Fusarium oxysporum f. sp. cubense (Foc), which causes Fusarium wilt in banana, was examined using DNA amplification fingerprinting (DAF). Ninety-four isolates which represented Races 1, 2, 3, and 4, and vegetative compatibility groups (VCGs) 0120, 0124, 0125, 0128, 0129, 01211, 01213/16, and 01220 were analysed. The genetic relatedness among isolates within each VCG, and between the 8 different VCGs of Foc present in Australia was determined. The DNA fingerprint patterns were VCG-specific, with each VCG representing a unique genotype. The genetic similarity among isolates within each VCG ranged from 97% to 100%. Among the different VCGs of Foc, 3 major clusters were distinguished which corresponded with race. All Race 1 and 2 isolates (VCGs 0124, 0125, 0128, and 01220) were closely related and clustered together, the Race 3 isolates from Heliconia clustered separately, and all Race 4 isolates (VCGs 0120, 0129, 01211, and 01213/16) clustered together. Fifteen isolates from Alstonville, NSW, were characterised because although they were classified as Race 2 based on their recovery from cooking banana cultivars, they belonged in VCG 0124, which had previously contained only Race 1 isolates. The occurrence of more than one race within a VCG means that vegetative compatibility grouping cannot be used to assign pathotype to pathogenic race as previously thought. It was possible to distinguish the Race 1 and Race 2 isolates within VCG 0124 using DNA fingerprinting, as each race produced a unique DNA fingerprint pattern. Among the Australian isolates, DNA fingerprinting analysis identified 9 different VCGs and genotypes of Foc.
Resumo:
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of RK-1, an antimicrobial peptide from rabbit kidney recently discovered from homology screening based on the distinctive physicochemical properties of the corticostatins/defensins. RK-1 consists of 32 residues, including six cysteines arranged into three disulfide bonds. It exhibits antimicrobial activity against Escherichia coli and activates Ca2+ channels in vitro. Through its physicochemical similarity, identical cysteine spacing, and linkage to the corticostatins/defensins, it was presumed to be a member of this family. However, RK-1 lacks both a large number of arginines in the primary sequence and a high overall positive charge, which are characteristic of this family of peptides. The three-dimensional solution structure, determined by NMR, consists of a triple-stranded antiparallel beta -sheet and a series of turns and is similar to the known structures of other alpha -defensins. This has enabled the definitive classification of RK-1 as a member of this family of antimicrobial peptides. Ultracentrifuge measurements confirmed that like rabbit neutrophil defensins, RK-1 is monomeric in solution, in contrast to human neutrophil defensins, which are dimeric.
Resumo:
The unactivated steroid receptors are chaperoned into a conformation that is optimal for binding hormone by a number of heat shock proteins, including Hsp90, Hsp70, Hsp40, and the immunophilin, FKBP52 (Hsp56). Together with its partner cochaperones, cyclophilin 40 (CyP40) and FKBP51, FKBP52 belongs to a distinct group of structurally related immunophilins that modulate steroid receptor function through their association with Hsp90. Due to the structural similarity between the component immunophilins, FKBP52 and cyclophilin 40, we decided to investigate whether CyP40 is also a heat shock protein. Exposure of MCF-7 breast cancer cells to elevated temperatures (42 degreesC for 3 hours) resulted in a 75-fold increase in CyP40 mRNA levels, but no corresponding increase in CyP40 protein expression, even after 7 hours of heat stress. The use of cycloheximide to inhibit protein synthesis revealed that in comparison to MCF-7 cells cultured at 37 degreesC, those exposed to heat stress (42 degreesC for 3 hours) displayed an elevated rate of degradation of both CyP40 and FKBP52 proteins. Concomitantly, the half-life of the CyP40 protein was reduced from more than 24 hours to just over 8 hours following heat shock. As no alteration in CyP40 protein levels occurred in cells exposed to heat shock, an elevated rate of degradation would imply that CyP40 protein was synthesized at an increased rate. hence the designation of human CyP40 as a heat shock protein. Application of heat stress elicited a marked redistribution of CyP40 protein in MCF-7 cells from a predominantly nucleolar localization, with some nuclear and cytoplasmic staining, to a pattern characterized by a pronounced nuclear accumulation of CyP40, with no distinguishable nucleolar staining. This increase in nuclear CyP40 possibly resulted from a redistribution of cytoplasmic and nucleolar CyP40, as no net increase in CyP40 expression levels occurred in response to stress. Exposure of MCF-7 cells to actinomycin D for 4 hours resulted in the translocation of the nucleolar marker protein, B23, from the nucleolus, with only a small reduction in nucleolar CyP40 levels. Under normal growth conditions, MCF-7 cells exhibited an apparent colocalization of CyP40 and FKBP52 within the nucleolus.
Resumo:
Much interest has been generated by recent reports on the discovery of circular (i.e. head-to-tail cyclized) proteins in plants. Here we report the three-dimensional structure of one of the newest such circular proteins, MCoTI-II, a novel trypsin inhibitor from Momordica cochinchinensis, a member of the Cucurbitaceae plant family. The structure consists of a small beta -sheet, several turns, and a cystine knot arrangement of the three disulfide bonds. Interestingly, the molecular topology is similar to that of the plant cyclotides (Craik, D. J., Daly, N. L., Bond, T., and Waine, C. (1999) J. Mol. Biol, 294, 1327-1336), which derive from the Rubiaceae and Violaceae plant families, have antimicrobial activities, and exemplify the cyclic cystine knot structural motif as part of their circular backbone. The sequence, biological activity, and plant family of MCoTI-II are all different from known cyclotides. However, given the structural similarity, cyclic backbone, and plant origin of MCoTI-II, we propose that MCoTI-II can be classified as a new member of the cyclotide class of proteins. The expansion of the cyclotides to include trypsin inhibitory activity and a new plant family highlights the importance and functional variability of circular proteins and the fact that they are more common than has previously been believed, Insights into the possible roles of backbone cyclization have been gained by a comparison of the structure of MCoTI-II with the homologous acyclic trypsin inhibitors CMTI-I and EETI-II from the Cucurbitaceae plant family.
Resumo:
Item noise models of recognition assert that interference at retrieval is generated by the words from the study list. Context noise models of recognition assert that interference at retrieval is generated by the contexts in which the test word has appeared. The authors introduce the bind cue decide model of episodic memory, a Bayesian context noise model, and demonstrate how it can account for data from the item noise and dual-processing approaches to recognition memory. From the item noise perspective, list strength and list length effects, the mirror effect for word frequency and concreteness, and the effects of the similarity of other words in a list are considered. From the dual-processing perspective, process dissociation data on the effects of length, temporal separation of lists, strength, and diagnosticity of context are examined. The authors conclude that the context noise approach to recognition is a viable alternative to existing approaches.
Resumo:
Centrifuge experiments modeling single-phase flow in prototype porous media typically use the same porous medium and permeant. Then, well-known scaling laws are used to transfer the results to the prototype. More general scaling laws that relax these restrictions are presented. For permeants that are immiscible with an accompanying gas phase, model-prototype (i.e., centrifuge model experiment-target system) scaling is demonstrated. Scaling is shown to be feasible for Miller-similar (or geometrically similar) media. Scalings are presented for a more, general class, Lisle-similar media, based on the equivalence mapping of Richards' equation onto itself. Whereas model-prototype scaling of Miller-similar media can be realized easily for arbitrary boundary conditions, Lisle-similarity in a finite length medium generally, but not always, involves a mapping to a moving boundary problem. An exception occurs for redistribution in Lisle-similar porous media, which is shown to map to spatially fixed boundary conditions. Complete model-prototype scalings for this example are derived.