996 resultados para silicon carbide (SiC) thin films
Resumo:
Owing to their distinct properties, carbon nanotubes (CNTs) have emerged as promising candidate for field emission devices. It has been found experimentally that the results related to the field emission performance show variability. The design of an efficient field emitting device requires the analysis of the variabilities with a systematic and multiphysics based modeling approach. In this paper, we develop a model of randomly oriented CNTs in a thin film by coupling the field emission phenomena, the electron-phonon transport and the mechanics of single isolated CNT. A computational scheme is developed by which the states of CNTs are updated in time incremental manner. The device current is calculated by using Fowler-Nordheim equation for field emission to study the performance at the device scale.
Resumo:
0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) ferroelectric-relaxor thin films have been deposited on La(0.5)nSr(0.5)CoO(3)/(1 1 1) Pt/TiO(2)/SiO(2)/Si by pulsed laser ablation at various oxygen partial pressures in the range 0.05 to 0.4 Torr. All the films have a rhombohedral perovskite structure. The grain morphology and orientation are drastically affected by the oxygen pressure, studied by x-ray diffraction and scanning electron microscopy. The domain structure investigations by dynamic contact electrostatic force microscopy have revealed that the distribution of polar nanoregions and their dynamics is influenced by the grain morphology, orientation and more importantly, oxygen vacancies. The correlation length extracted from autocorrelation function images has shown that the polarization disorder decreases with oxygen pressure up to 0.3 Torr. The presence of polarized domains and their electric field induced switching is discussed in terms of internal bias field and domain wall pinning. Film deposited at 0.4 Torr presents a curious case with unique triangular grain morphology and large polarization disorder.
Resumo:
We present spectroscopic ellipsometry measurements on thin films of polymer nanocomposites consisting of gold nanoparticles embedded in poly(styrene). The temperature dependence of thickness variation is used to estimate the glass transition temperature, T(g). In these thin films we find a significant dependence of T(g) on the nature of dispersion of the embedded nanoparticles. Our work thus highlights the crucial role played by the particle polymer interface morphology in determining the glass transition in particular and thermo-mechanical properties of such nanocomposite films.
The effect of electrochemical lithiation on physicochemical properties of RF-sputtered Sn thin films
Resumo:
Thin films of Sn were deposited on Pt/Si substrates by sputtering technique and subjected to electrochemical lithiation studies. Electrochemical lithiation of Sn resulted in the formation of Sn-Li alloys of different compositions. Charging of Sn-coated Pt/Si electrodes was terminated at different potentials and the electrodes were examined for physicochemical properties. The scanning electron microscopy and atomic force microscopy images suggested that the Sn films expanded on lithiation. Roughness of the film increased with an increase in the quantity of Li present in Sn-Li alloy. Electrochemical impedance data suggested that the kinetics of charging became sluggish with an increase in the quantity of Li in Sn-Li alloy.
Resumo:
The effect of an applied electric field on the magnetic properties of L1(0)-ordered CoPd thin films is investigated by first-principle calculations. Both the magnetic moment and the magnetocrystalline anisotropy of the surface atoms are changed by the electric field, but the net effect depends on the surface termination. The magnetocrystalline anisotropy switches from in-plane to perpendicular in the presence of external electric field. Typical magnetic-moment changes are 0.1 mu(B) per eV/angstrom The main mechanism is the shift of the Fermi level, but the anisotropy change also reflects a crystal-field change due to incomplete screening.
Resumo:
Bi-layered Aurivillius compounds prove to be efficient candidates of nonvolatile memories. SrBi2Nb2O9 thin films were deposited by excimer laser ablation at low substrate temperature (400 °C) followed by an ex situ annealing at 750 °C. The polarization hysteresis behavior was confirmed by variation of polarization with the external applied electric field and also verified with capacitance versus voltage characteristics. The measured values of spontaneous and remnant polarizations were, respectively, 9 and 6 μC/cm2 with a coercive field of 90 kV/cm. The measured dielectric constant and dissipation factors at 100 kHz were 220 and 0.02, respectively. The frequency analysis of dielectric and ac conduction properties showed a distribution of relaxation times due to the presence of multiple grain boundaries in the films. The values of activation energies from the dissipation factor and grain interior resistance were found to be 0.9 and 1.3 eV, respectively. The deviation in these values was attributed to the energetic conditions of the grain boundaries and bulk grains. The macroscopic relaxation phenomenon is controlled by the higher resistive component in a film, such as grain boundaries at lower temperatures, which was highlighted in the present article in close relation to interior grain relaxation and conduction properties.
Resumo:
The pulsed-laser ablation technique has been employed to deposit polycrystalline thin films of layered-structure ferroelectric BaBi2Nb2O9 (BBN). Low-substrate-temperature growth (Ts = 400 °C) followed by ex situ annealing at 800 °C for 30 min was performed to obtain a preferred orientation. Ferroelectricity in the films was verified by examining the polarization with the applied electric field and was also confirmed from the capacitance–voltage characteristics. The films exhibited well-defined hysteresis loops, and the values of saturation (Ps) and remanent (Pr) polarization were 4.0 and 1.2 μC/cm2, respectively. The room-temperature dielectric constant and dissipation factor were 214 and 0.04, respectively, at a frequency of 100 kHz. A phase transition from a ferroelectric to paraelectric state of the BBN thin film was observed at 220 °C. The dissipation factor of the film was observed to increase after the phase transition due to a probable influence of dc conduction at high temperatures. The real and imaginary part of the dielectric constant also exhibited strong frequency dispersion at high temperatures.