848 resultados para serrated aperture
Resumo:
Context. Comet 67P/Churyumov-Gerasimenko is the target of the European Space Agency Rosetta spacecraft rendez-vous mission. Detailed physical characteristation of the comet before arrival is important for mission planning as well as providing a test bed for ground-based observing and data-analysis methods. Aims: To conduct a long-term observational programme to characterize the physical properties of the nucleus of the comet, via ground-based optical photometry, and to combine our new data with all available nucleus data from the literature. Methods: We applied aperture photometry techniques on our imaging data and combined the extracted rotational lightcurves with data from the literature. Optical lightcurve inversion techniques were applied to constrain the spin state of the nucleus and its broad shape. We performed a detailed surface thermal analysis with the shape model and optical photometry by incorporating both into the new Advanced Thermophysical Model (ATPM), along with all available Spitzer 8-24 μm thermal-IR flux measurements from the literature. Results: A convex triangular-facet shape model was determined with axial ratios b/a = 1.239 and c/a = 0.819. These values can vary by as much as 7% in each axis and still result in a statistically significant fit to the observational data. Our best spin state solution has Psid = 12.76137 ± 0.00006 h, and a rotational pole orientated at Ecliptic coordinates λ = 78°(±10°), β = + 58°(±10°). The nucleus phase darkening behaviour was measured and best characterized using the IAU HG system. Best fit parameters are: G = 0.11 ± 0.12 and HR(1,1,0) = 15.31 ± 0.07. Our shape model combined with the ATPM can satisfactorily reconcile all optical and thermal-IR data, with the fit to the Spitzer 24 μm data taken in February 2004 being exceptionally good. We derive a range of mutually-consistent physical parameters for each thermal-IR data set, including effective radius, geometric albedo, surface thermal inertia and roughness fraction. Conclusions: The overall nucleus dimensions are well constrained and strongly imply a broad nucleus shape more akin to comet 9P/Tempel 1, rather than the highly elongated or "bi-lobed" nuclei seen for comets 103P/Hartley 2 or 8P/Tuttle. The derived low thermal inertia of
Resumo:
We have calculated 90% confidence limits on the steady-state rate of catastrophic disruptions of main belt asteroids in terms of the absolute magnitude at which one catastrophic disruption occurs per year as a function of the post-disruption increase in brightness (Δm) and subsequent brightness decay rate (τ ). The confidence limits were calculated using the brightest unknown main belt asteroid (V=18.5) detected with the Pan-STARRS1 (Pan-STARRS1) telescope. We measured the Pan-STARRS1’s catastrophic disruption detection efficiency over a 453-day interval using the Pan-STARRS moving object processing system (MOPS) and a simple model for the catastrophic disruption event’s photometric behavior in a small aperture centered on the catastrophic disruption event. We then calculated the contours in the ranges from and encompassing measured values from known cratering and disruption events and our model’s predictions. Our simplistic catastrophic disruption model suggests that and which would imply that H0≳28—strongly inconsistent withH0,B2005=23.26±0.02 predicted by Bottke et al. (Bottke, W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H.F. [2005]. Icarus, 179, 63–94.) using purely collisional models. However, if we assume that H0=H0,B2005 our results constrain , inconsistent with our simplistic impact-generated catastrophic disruption model. We postulate that the solution to the discrepancy is that >99% of main belt catastrophic disruptions in the size range to which this study was sensitive (∼100 m) are not impact-generated, but are instead due to fainter rotational breakups, of which the recent discoveries of disrupted asteroids P/2013 P5 and P/2013 R3 are probable examples. We estimate that current and upcoming asteroid surveys may discover up to 10 catastrophic disruptions/year brighter than V=18.5.
Resumo:
The allocation of a large amount of bandwidth by regulating bodies in the 70/80 GHz band, i.e., the E-band, has opened up new potentials and challenges for providing affordable and reliable Gigabit per second wireless point-to-point links. This article first reviews the available bandwidth and licensing regulations in the E-band. Subsequently, different propagation models, e.g., the ITU-R and Cane models, are compared against measurement results and it is concluded that to meet specific availability requirements, E-band wireless systems may need to be designed with larger fade margins compared to microwave systems. A similar comparison is carried out between measurements and models for oscillator phase noise. It is confirmed that phase noise characteristics, that are neglected by the models used for narrowband systems, need to be taken into account for the wideband systems deployed in the E-band. Next, a new multi-input multi-output (MIMO) transceiver design, termed continuous aperture phased (CAP)-MIMO, is presented. Simulations show that CAP-MIMO enables E-band systems to achieve fiber-optic like throughputs. Finally, it is argued that full-duplex relaying can be used to greatly enhance the coverage of E-band systems without sacrificing throughput, thus, facilitating their application in establishing the backhaul of heterogeneous networks.
Resumo:
The recent development of the massive multiple-input multiple-output (MIMO) paradigm, has been extensively based on the pursuit of favorable propagation: in the asymptotic limit, the channel vectors become nearly orthogonal and interuser interference tends to zero [1]. In this context, previous studies
have considered fixed inter-antenna distance, which implies an increasing array aperture as the number of elements increases. Here, we focus on a practical, space-constrained topology, where an increase in the number of antenna elements in a fixed total space imposes an inversely proportional decrease in the inter-antenna distance. Our analysis shows that, contrary to existing studies, inter-user interference does not vanish in the massive MIMO regime, thereby creating a saturation effect on the achievable rate.
Resumo:
This study reports the performance of an Archimedean spiral antenna, which exhibits unidirectional circularly polarized radiation patterns with a peak gain >8 dBic in the lower (2.4–2.485 GHz) and upper (5.15–5.35 and 5.725–5.875 GHz) Wireless local area network frequency bands. The required backlobe suppression and impedance match are obtained by placing a multiresonant high impedance surface (HIS) in close proximity to the radiating aperture. Simulated and measured radiation patterns are shown at the center frequency of all three channels and a comparison of the key performance metrics is made with free space and metal backed antenna arrangements to demonstrate the enhancements which are attributed to the HIS reflector.
Resumo:
We analyze a set of 760 475 observations of 333 026 unique main-belt objects obtained by the Pan-STARRS1(PS1) survey telescope between 2012 May 20 and 2013 November 9, a period during which PS1 discoveredtwo main-belt comets, P/2012 T1 (PANSTARRS) and P/2013 R3 (Catalina-PANSTARRS). PS1 cometdetection procedures currently consist of the comparison of the point spread functions (PSFs) of movingobjects to those of reference stars, and the flagging of objects that show anomalously large radial PSFwidths for human evaluation and possible observational follow-up. Based on the number of missed discoveryopportunities among comets discovered by other observers, we estimate an upper limit comet discoveryefficiency rate of 70% for PS1. Additional analyses that could improve comet discovery yields infuture surveys include linear PSF analysis, modeling of trailed stellar PSFs for comparison to trailed movingobject PSFs, searches for azimuthally localized activity, comparison of point-source-optimized photometryto extended-source-optimized photometry, searches for photometric excesses in objects withknown absolute magnitudes, and crowd-sourcing. Analysis of the discovery statistics of the PS1 surveyindicates an expected fraction of 59 MBCs per 106 outer main-belt asteroids (corresponding to a totalexpected population of 140 MBCs among the outer main-belt asteroid population with absolute magnitudesof 12 < HV < 19:5), and a 95% confidence upper limit of 96 MBCs per 106 outer main-belt asteroids(corresponding to a total of 230 MBCs), assuming a detection efficiency of 50%. We note howeverthat significantly more sensitive future surveys (particularly those utilizing larger aperture telescopes)could detect many more MBCs than estimated here. Examination of the orbital element distribution ofall known MBCs reveals an excess of high eccentricities (0:1 < e < 0:3) relative to the background asteroidpopulation. Theoretical calculations show that, given these eccentricities, the sublimation rate for atypical MBC is orders of magnitude larger at perihelion than at aphelion, providing a plausible physicalexplanation for the observed behavior of MBCs peaking in observed activity strength near perihelion.These results indicate that the overall rate of mantle growth should be slow, consistent with observationalevidence that MBC activity can be sustained over multiple orbit passages.
Resumo:
We have developed a model to predict the post-collision brightness increase of sub-catastrophic collisions between asteroids and to evaluate the likelihood of a survey detecting these events. It is based on the cratering scaling laws of Holsapple and Housen (2007) and models the ejecta expansion following an impact as occurring in discrete shells each with their own velocity. We estimate the magnitude change between a series of target/impactor pairs, as- suming it is given by the increase in reflecting surface area within a photometric aperture due to the resulting ejecta. As expected the photometric signal increases with impactor size, but we find also that the photometric signature decreases rapidly as the target aster- oid diameter increases, due to gravitational fallback. We have used the model results to make an estimate of the impactor diameter for the (596) Scheila collision of D = 49 − 65m depending on the impactor taxonomy, which is broadly consistent with previous estimates. We varied both the strength regime (highly porous and sand/cohesive soil) and the tax- onomic type (S-, C- and D-type) to examine the effect on the magnitude change, finding that it is significant at early stages but has only a small effect on the overall lifetime of the photometric signal. Combining the results of this model with the collision frequency estimates of Bottke et al. (2005), we find that low-cadence surveys of ∼one visit per luna- tion will be insensitive to impacts on asteroids with D < 20km if relying on photometric detections.
Resumo:
This paper describes the performance characteristics and experimental validation of a compact conical horn antenna with a dielectric cylinder spiral phase plate attached at its aperture. This performs the function of a spatial phase imprinting device creating a helical wave-front which results in a null in the far field radiation pattern of the antenna assembly.
Resumo:
A novel type of microwave probes based on the loaded aperture geometry has been proposed and experimentally evaluated for dielectrics characterisation and high-resolution near-field imaging. Experimental results demonstrate the possibility of very accurate microwave spectroscopic characterisation of thin lossy dielectric samples and biological materials containing water. High-resolution images of the subwavelength lossy dielectric strips and wet and dry leaves have been obtained with amplitude contrast around 10-20 dB and spatial resolution better than one-tenth of a wavelength in the near-field zone. A microwave imaging scenario for the early-stage skin cancer identification based on the artificial dielectric model has also been explored. This model study shows that the typical resolution of an artificial malignant tumour with a characteristic size of one-tenth of a wavelength can be discriminated with at least 6 dB amplitude and 50° phase contrast from the artificial healthy skin and with more than 3 dB contrast from a benign lesion of the same size. It has also been demonstrated that the proposed device can efficiently deliver microwave energy to very small, subwavelength, focal areas which is highly sought in the microwave hyperthermia applications.
Resumo:
A multiuser dual-hop relaying system over mixed radio frequency/free-space optical (RF/FSO) links is investigated. Specifically, the system consists of m single-antenna sources, a relay node equipped with n≥ m receive antennas and a single photo-aperture transmitter, and one destination equipped with a single photo-detector. RF links are used for the simultaneous data transmission from multiple sources to the relay. The relay operates under the decode-and-forward protocol and utilizes the popular V-BLAST technique by successively decoding each user's transmitted stream. Two common norm-based orderings are adopted, i.e., the streams are decoded in an ascending or a descending order. After V-BLAST, the relay retransmits the decoded information to the destination via a point-to-point FSO link in m consecutive timeslots. Analytical expressions for the end-to-end outage probability and average symbol error probability of each user are derived, while closed-form asymptotic expressions are also presented. Capitalizing on the derived results, some engineering insights are manifested, such as the coding and diversity gain of each user, the impact of the pointing error displacement on the FSO link and the V-BLAST ordering effectiveness at the relay.
Resumo:
A novel microwave high-resolution near-field imaging technique is proposed and experimentally evaluated in reflectometry imaging scenarios involving planar metal-dielectric structures. Two types of resonance near field probes-a small helix antenna and a loaded subwavelength slot aperture are studied in this paper. These probes enable very tight spatial field localization with the full width at half maximum around one tenth of a wavelength, λ, at λ/100-λ/10 standoff distance. Importantly, the proposed probes permit resonance electromagnetic coupling to dielectric or printed conductive patterns, which leads to the possibility of very high raw image resolution with imaged feature-to-background contrast greater than 10-dB amplitude and 50° phase. In addition, high-resolution characterization of target geometries based on the cross correlation image processing technique is proposed and assessed using experimental data. It is shown that printed elements features with subwavelength size ~λ/15 or smaller can be characterized with at least 10-dB resolution contrast.
Resumo:
Este trabalho descreve o desenvolvimento e aplicação de sistemas baseados em detetores gasosos microestruturados, para imagiologia de fluorescência de raios-X por dispersão em energia (EDXRF). A técnica de imagiologia por fluorescência de raios-X assume-se como uma técnica poderosa, não-destrutiva, em análises da distribuição espacial de elementos em materiais. Os sistemas para imagiologia de EDXRF desenvolvidos são constituídos por: um tubo de raios-X, usado para excitar os elementos da amostra; um detetor gasoso microestruturado; e uma lente pinhole que foca a radiação de fluorescência no plano do detetor formando assim a imagem e permitindo a sua ampliação. Por outro lado é estudada a influência do diâmetro da abertura do pinhole bem como do fator de ampliação obtido para a imagem, na resolução em posição do sistema. Foram usados dois conceitos diferentes de detetores gasosos microestruturados. O primeiro, baseado na microestrutura designada por 2D-Micro-Hole & Strip Plate (2D-MHSP) com uma área ativa de 3 3 cm2, enquanto que o segundo, baseado na estrutura 2D-Thick-COBRA (2D-THCOBRA) apresenta uma área ativa de deteção de 10 10 cm2. Estes detetores de raios-X de baixo custo têm a particularidade de funcionar em regime de fotão único permitindo a determinação da energia e posição de interação de cada fotão que chega ao detetor. Deste modo permitem detetar a energia dos fotões X de fluorescência, bem como obter imagens 2D da distribuição desses fotões X para o intervalo de energias desejado. São por isso adequados a aplicações de imagiologia de EDXRF. Os detetores desenvolvidos mostraram resoluções em energia de 17% e 22% para fotões incidentes com uma energia de 5.9 keV, respectivamente para o detetor 2D-MHSP e 2D-THCOBRA e resoluções em posição adequadas para um vasto número de aplicações. Ao longo deste trabalho é detalhado o desenvolvimento, o estudo das características e do desempenho de cada um dos detetores, e sua influência na performance final de cada sistema proposto. Numa fase mais avançada apresentam-se os resultados correspondentes à aplicação dos dois sistemas a diversas amostras, incluindo algumas do nosso património cultural e também uma amostra biológica.
Resumo:
Vector sensors measure both the acoustic pressure and the three components of particle velocity. Because of this, a vector sensor array (VSA) has the advantage of being able to provide substantially higher directivity with a much smaller aperture than an array of traditional scalar (pressure only) hydrophones. Although several, most of them theoretic, works were published from early nineties, only in the last years due to improvements and availability of vector sensor technology, the interest on field experiments with VSA increased in the scientific community. During the Makai Experiment, that took place off the coast of Kauai I., Hawaii, in September 2005, real data were collected with a 4 element vertical VSA. These data will be discussed in the present paper. The acoustic signals were emitted from a near source (low frequency ship noise) and two high frequency controlled acoustic sources located within a range of 2km from the VSA. The advantages of the VSA over traditional scalar hydrophone arrays in source localization will be addressed using conventional beamforming.
Resumo:
Introdução: A disfunção temporomandibular (DTM), de causa muscular, caracteriza-se por uma dor músculo-esquelética crónica, com sinais e sintomas específicos como a presença de Trigger Points (TrPs). Objetivo: Avaliar o efeito da Técnica de Inibição de Jones (TIJ) nos músculos masseter e temporal em indivíduos com DTM, e a identificação dos sinais e sintomas, a relação entre a severidade da DTM, a ansiedade e a qualidade de sono. Métodos: Estudo quasi-experimental, constituído por 16 indivíduos no grupo experimental (GE) e 17 grupo controle (GC). O grau de severidade foi avaliado pelo Índice de Helkimo e as alterações do sono pelo questionário de Pittsburgh sobre a qualidade do sono. Apenas o GE foi sujeito a uma TIJ nos TrPs latentes dos músculos masseter e temporal. Os dois grupos foram avaliados pré-intervenção (M0), pós-intervenção (M1) e 3 semanas após (M2), as amplitudes de movimento ativas de abertura, lateralidade direita/esquerda e protusão da boca bem como a dor (EVA) em repouso e na abertura máxima. Resultados: Foi possível observar que quanto maior o grau de DTM, maior a frequência de ansiedade e pior a qualidade do sono. Observou-se um decréscimo de TrPs, no GE, após a aplicação da técnica, principalmente no masseter. Não foi possível verificar diferenças inter-grupos. Contudo, observou-se no GE uma melhoria em todas as amplitudes avaliadas entre o M0 e o M2. Em relação à EVA em repouso e na abertura máxima, o GE demonstrou diminuição da dor no M1 e manteve valores inferiores no M2. Conclusão: Verifica-se uma diminuição dos TrPs, uma melhoria das amplitudes ativas bem como uma diminuição da dor após a aplicação da TIJ no GE. Já ao longo do tempo, o efeito é menos expressivo contudo observam-se valores inferiores comparativamente a M0.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Electrónica e Telecomunicações