943 resultados para self-consistent calculation
Resumo:
Charge-transfer cross sections have been obtained by using time-of-flight techniques, and results correlated with reaction energetics and theoretical structures computed by self-consistent field-molecular orbital methods. Ion recombination energies, structures, heats of formation, reaction energy defects, and 3.0-keV charge-transfer cross sections are presented for reactions of molecular and fragment ions produced by electron bombardment ionization of CH30CH, and CH$l molecules. Relationships between experimental cross sections and reaction energetics involving different ion structures are discussed.
Resumo:
Doubly charged ion mass spectra of alkyl-substituted furans and pyrroles were obtained using a double-focusing magnetic mass spectrometer operated at 3.2 kV accelerating voltage. Molecular ions were the dominant species found in doubly charged spectra of lower molecular weight heterocydic compounds, whereas the spectra of the higher weight homologues were typified by abundant fragment ions from extensive decomposition. Measured doubly charged ionization and appearance energies ranged from 22.8 to 47.9 eV. Ionization energies were correlated with values calculated using self-consistent field–molecular orbital techniques. A multichannel diabatic curve-crossing model was developed to investigate the fundamental organic ion reactions responsible for development of doubly charged ion mass spectra. Probabilities for Landau–Zener type transitions between reactant and product curves were determined and used in the collision model to predict charge-transfer cross-sections, which compared favorably with experimental cross-sections obtained using time-of-flight techniques.
Resumo:
Charge transfer reactivities of hydrocarbon ions have been measured with time-of-flight techniques, and results correlated with theoretical structures computed by self-consistent field molecular orbital methods. Recombination energies, ion structures, heats of formation, reaction energetics and relative charge transfer cross-sections are presented for molecular and fragment ions produced by electron bombardment ionization of CH4, C2H4, C2H6, C3H8 and C4H10 molecules. Even-electron bridged cations have low ion recombination energies and relatively low charge transfer cross-sections as compared with odd-electron hydrocarbon cations.
Resumo:
Unique features of doubly-charged stable organic ions are examined and the results correlated with experimental observations. Self-consistent field molecular orbital methods are used to compute structures and stabilities of CnH 2 2+ (n=2–9) ions which are prominent in electron impact ionization of hydrocarbon molecules. A simple curve crossing model is employed to rationalize charge transfer reactions of these ions.
Resumo:
The dynamics of glass is of importance in materials science but its nature has not yet been fully understood. Here we report that a verification of the temperature dependencies of the primary relaxation time or viscosity in the ultraslowing/ultraviscous domain of glass-forming systems can be carried out via the analysis of the inverse of the Dyre-Olsen temperature index. The subsequent analysis of experimental data indicates the possibility of the self-consistent description of glass-forming low-molecular-weight liquids, polymers, liquid crystals, orientationally disordered crystals and Ising spin-glass-like systems, as well as the prevalence of equations associated with the 'finite temperature divergence'. All these lead to a new formula for the configurational entropy in glass-forming systems. Furthermore, a link to the dominated local symmetry for a given glass former is identified here. Results obtained show a new relationship between the glass transition and critical phenomena.
Resumo:
We study the interaction between a magnetic dipole mimicking the Gerasimovich magnetic anomaly on the lunar surface and the solar wind in a self-consistent 3-D quasi-neutral hybrid simulation where ions are modeled as particles and electrons as a charge-neutralizing fluid. Especially, we consider the origin of the recently observed electric potentials at lunar magnetic anomalies. An antimoonward Hall electric field forms in our simulation resulting in a potential difference of <300V on the lunar surface, in which the value is similar to observations. Since the hybrid model assumes charge neutrality, our results suggest that the electric potentials at lunar magnetic anomalies can be formed by decoupling of ion and electron motion even without charge separation.
Resumo:
A critical problem in radiocarbon dating is the spatial and temporal variability of marine reservoir ages (MRAs). We assessed the MRA evolution during the last deglaciation by numerical modeling, applying a self-consistent iteration scheme in which an existing radiocarbon chronology (derived by Hughen et al., Quat. Sci. Rev., 25, pp. 3216-3227, 2006) was readjusted by transient, 3-D simulations of marine and atmospheric Delta14C. To estimate the uncertainties regarding the ocean ventilation during the last deglaciation, we considered various ocean overturning scenarios which are based on different climatic background states (PD: modern climate, GS: LGM climate conditions). Minimum and maximum MRAs are included in file 'MRAminmax_21-14kaBP.nc'. Three further files include MRAs according to equilibrium simulations of the preindustrial ocean (file 'C14age_preindustrial.nc'; this is an update of our results published in 2005) and of the glacial ocean (files 'C14age_spinupLGM_GS.nc' and 'C14age_spinupLGM_PD.nc').
Resumo:
Submarine basalts are difficult to date accurately by the potassium-argon method. Dalrymple and Moore (1968) and Dymond (1970), for example, showed that, when the conventional K-Ar method is used, pillow lavas may contain excess 40Ar. Use of the 40Ar/39Ar step-heating method has not overcome the problem, as had been hoped, and has produced some conflicting results. Ozima and Saito (1973) concluded that the excess 40Ar is retained only in high temperature sites, but Seidemann (1978) found that it could be released at all temperatures. Furthermore, addition of potassium, from seawater, to the rock after it has solidified can result in low ages (Seidemann, 1977), the opposite effect to that of excess 40Ar. Thus, apparent ages may be either greater or less than the age of extrusion. Because of this discouraging record, the present study was approached pragmatically, to investigate whether self-consistent results can be obtained by the 40Ar/39Ar step-heating method.
Resumo:
During Ocean Drilling Program Leg 123, two sites were drilled in the deep Indian Ocean. Physical properties were measured in soft Quaternary and Lower Cretaceous sediments to relatively fresh, glass-bearing pillow lavas and massive basalts. Porosities ranged from 89% near the seafloor to 1.6% for the dense basalts. This self-consistent set of measurements permitted some descriptive models of physical properties to be more rigorously tested than before. Predictive relationships between porosity and compressional-wave velocity have generally been based upon the Wyllie time average equation. However, this equation does not adequately describe the actual relationship between these two parameters, and many have attempted to improve it. In most cases, models were derived by testing them against a set of data representing a relatively narrow range of porosity values. Similarly, the use of the Wyllie equation has often been justified by a pseudolinear fit to the data over a narrow range of porosity values. The limitations of the Wyllie relationship have been re-emphasized here. A semi-empirical acoustic impedance equation is developed that provides a more accurate porosity-velocity transform, using realistic material parameters, than has hitherto been possible. A closer correlation can be achieved with this semi-empirical relationship than with more theoretically based equations. In addition, a satisfactory empirical equation can be used to describe the relationship between thermal conductivity and porosity. If enough is known about core sample lithologies to provide estimates of the matrix and pore water parameters, then these predictive equations enable one to describe completely the behavior of a saturated rock core in terms of compressional-wave velocity, thermal conductivity, porosity, and bulk density.
Resumo:
We will present calculations of opacities for matter under LTE conditions. Opacities are needed in radiation transport codes to study processes like Inertial Confinement Fusion and plasma amplifiers in X-ray secondary sources. For the calculations we use the code BiGBART, with either a hydrogenic approximation with j-splitting or self-consistent data generated with the atomic physics code FAC. We calculate the atomic structure, oscillator strengths, radiative transition energies, including UTA computations, and photoionization cross-sections. A DCA model determines the configurations considered in the computation of the opacities. The opacities obtained with these two models are compared with experimental measurements.
Resumo:
AnewRelativisticScreenedHydrogenicModel has been developed to calculate atomic data needed to compute the optical and thermodynamic properties of high energy density plasmas. The model is based on anewset of universal screeningconstants, including nlj-splitting that has been obtained by fitting to a large database of ionization potentials and excitation energies. This database was built with energies compiled from the National Institute of Standards and Technology (NIST) database of experimental atomic energy levels, and energies calculated with the Flexible Atomic Code (FAC). The screeningconstants have been computed up to the 5p3/2 subshell using a Genetic Algorithm technique with an objective function designed to minimize both the relative error and the maximum error. To select the best set of screeningconstants some additional physical criteria has been applied, which are based on the reproduction of the filling order of the shells and on obtaining the best ground state configuration. A statistical error analysis has been performed to test the model, which indicated that approximately 88% of the data lie within a ±10% error interval. We validate the model by comparing the results with ionization energies, transition energies, and wave functions computed using sophisticated self-consistent codes and experimental data.
Resumo:
We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrödinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrödinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude
Resumo:
The beam properties of tapered semiconductor optical amplifiers emitting at 1.57 μm are analyzed by means of simulations with a self-consistent steady state electro-optical and thermal simulator. The results indicate that the self-focusing caused by carrier lensing is delayed to higher currents for devices with taper angle slightly higher than the free diffraction angle.
Resumo:
An important aspect of Process Simulators for photovoltaics is prediction of defect evolution during device fabrication. Over the last twenty years, these tools have accelerated process optimization, and several Process Simulators for iron, a ubiquitous and deleterious impurity in silicon, have been developed. The diversity of these tools can make it difficult to build intuition about the physics governing iron behavior during processing. Thus, in one unified software environment and using self-consistent terminology, we combine and describe three of these Simulators. We vary structural defect distribution and iron precipitation equations to create eight distinct Models, which we then use to simulate different stages of processing. We find that the structural defect distribution influences the final interstitial iron concentration ([Fe-i]) more strongly than the iron precipitation equations. We identify two regimes of iron behavior: (1) diffusivity-limited, in which iron evolution is kinetically limited and bulk [Fe-i] predictions can vary by an order of magnitude or more, and (2) solubility-limited, in which iron evolution is near thermodynamic equilibrium and the Models yield similar results. This rigorous analysis provides new intuition that can inform Process Simulation, material, and process development, and it enables scientists and engineers to choose an appropriate level of Model complexity based on wafer type and quality, processing conditions, and available computation time.
Resumo:
The gas phase and aqueous thermochemistry and reactivity of nitroxyl (nitrosyl hydride, HNO) were elucidated with multiconfigurational self-consistent field and hybrid density functional theory calculations and continuum solvation methods. The pKa of HNO is predicted to be 7.2 ± 1.0, considerably different from the value of 4.7 reported from pulse radiolysis experiments. The ground-state triplet nature of NO− affects the rates of acid-base chemistry of the HNO/NO− couple. HNO is highly reactive toward dimerization and addition of soft nucleophiles but is predicted to undergo negligible hydration (Keq = 6.9 × 10−5). HNO is predicted to exist as a discrete species in solution and is a viable participant in the chemical biology of nitric oxide and derivatives.