958 resultados para scientific publicizing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the question of whether the journal ranking VHB-JOURQUAL 2 can be considered as a good measure for the construct “scientific quality”. Various rankings in business research provide the database for the analysis. The correlations between theses rankings are used to assess the validity of VHB-JOURQUAL 2 along various validity criteria. The correlations with rankings that measure the same construct based on different methods show that VHB-JOURQUAL 2 has acceptable, but moderate convergent validity. The validity varies considerably across disciplines, showing that the heterogeneity of business administration is not sufficiently represented by this overall ranking. The variability is related to the variation in members per discipline represented by the German Association for Business Research. Furthermore, the measure shows a weak correlation with acceptance rates as an indicator of nomological validity in some disciplines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From its original formulation in 1990 the International Trans-Antarctic Scientific Expedition (ITASE) has had as its primary aim the collection and interpretation of a continent-wide array of environmental parameters assembled through the coordinated efforts of scientists from several nations. ITASE offers the ground-based opportunities of traditional-style traverse travel coupled with the modern technology of CPS, crevasse detecting radar, satellite communications and multidisciplinary research. By operating predominantly in the mode of an oversnow traverse, ITASE offers scientists the opportunity to experience the dynamic range of the Antarctic environment. ITASE also offers an important interactive venue for research similar to that afforded by oceanographic research vessels and large polar field camps, without the cost of the former or the lack of mobility of the latter. More importantly, the combination of disciplines represented by ITASE provides a unique, multidimensional (space and time) view of the ice sheet and its history. ITASE has now collected > 20 000 km of snow radar, recovered more than 240 firn/ice cores (total length 7000m), remotely penetrated to similar to 4000m into the ice sheet, and sampled the atmosphere to heights of > 20 km.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Is numerical mimicry a third way of establishing truth? Kevin Heng received his M.S. and Ph.D. in astrophysics from the Joint Institute for Laboratory Astrophysics (JILA) and the University of Colorado at Boulder. He joined the Institute for Advanced Study in Princeton from 2007 to 2010, first as a Member and later as the Frank & Peggy Taplin Member. From 2010 to 2012 he was a Zwicky Prize Fellow at ETH Z¨urich (the Swiss Federal Institute of Technology). In 2013, he joined the Center for Space and Habitability (CSH) at the University of Bern, Switzerland, as a tenure-track assistant professor, where he leads the Exoplanets and Exoclimes Group. He has worked on, and maintains, a broad range of interests in astrophysics: shocks, extrasolar asteroid belts, planet formation, fluid dynamics, brown dwarfs and exoplanets. He coordinates the Exoclimes Simulation Platform (ESP), an open-source set of theoretical tools designed for studying the basic physics and chemistry of exoplanetary atmospheres and climates (www.exoclime.org). He is involved in the CHEOPS (Characterizing Exoplanet Satellite) space telescope, a mission approved by the European Space Agency (ESA) and led by Switzerland. He spends a fair amount of time humbly learning the lessons gleaned from studying the Earth and Solar System planets, as related to him by atmospheric, climate and planetary scientists. He received a Sigma Xi Grant-in-Aid of Research in 2006

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent Cerebrum article by Larry Cahill about sex differences in the human brain has prompted a group of women academicians to respond and for the author to reply to their response. We encourage you to evaluate both points of view, as well as the original article, and form your own opinion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases׳ abundances and the precise measurement of the helium mixing ratio have only been made available through in situ measurements by the Galileo probe. This paper describes the main scientific goals to be addressed by the future in situ exploration of Saturn placing the Galileo probe exploration of Jupiter in a broader context and before the future probe exploration of the more remote ice giants. In situ exploration of Saturn׳s atmosphere addresses two broad themes that are discussed throughout this paper: first, the formation history of our solar system and second, the processes at play in planetary atmospheres. In this context, we detail the reasons why measurements of Saturn׳s bulk elemental and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula. We also show that the in situ measurement of CO (or any other disequilibrium species that is depleted by reaction with water) in Saturn׳s upper troposphere may help constraining its bulk O/H ratio. We compare predictions of Jupiter and Saturn׳s bulk compositions from different formation scenarios, and highlight the key measurements required to distinguish competing theories to shed light on giant planet formation as a common process in planetary systems with potential applications to most extrasolar systems. In situ measurements of Saturn׳s stratospheric and tropospheric dynamics, chemistry and cloud-forming processes will provide access to phenomena unreachable to remote sensing studies. Different mission architectures are envisaged, which would benefit from strong international collaborations, all based on an entry probe that would descend through Saturn׳s stratosphere and troposphere under parachute down to a minimum of 10 bar of atmospheric pressure. We finally discuss the science payload required on a Saturn probe to match the measurement requirements.