725 resultados para rural health -- statistics
Resumo:
In order to estimate the safety impact of roadway interventions engineers need to collect, analyze, and interpret the results of carefully implemented data collection efforts. The intent of these studies is to develop Accident Modification Factors (AMF's), which are used to predict the safety impact of various road safety features at other locations or in upon future enhancements. Models are typically estimated to estimate AMF's for total crashes, but can and should be estimated for crash outcomes as well. This paper first describes data collected with the intent estimate AMF's for rural intersections in the state of Georgia within the United Sates. Modeling results of crash prediction models for the crash outcomes: angle, head-on, rear-end, sideswipe (same direction and opposite direction) and pedestrian-involved crashes are then presented and discussed. The analysis reveals that factors such as the Annual Average Daily Traffic (AADT), the presence of turning lanes, and the number of driveways have a positive association with each type of crash, while the median width and the presence of lighting are negatively associated with crashes. The model covariates are related to crash outcome in different ways, suggesting that crash outcomes are associated with different pre-crash conditions.
Resumo:
A national-level safety analysis tool is needed to complement existing analytical tools for assessment of the safety impacts of roadway design alternatives. FHWA has sponsored the development of the Interactive Highway Safety Design Model (IHSDM), which is roadway design and redesign software that estimates the safety effects of alternative designs. Considering the importance of IHSDM in shaping the future of safety-related transportation investment decisions, FHWA justifiably sponsored research with the sole intent of independently validating some of the statistical models and algorithms in IHSDM. Statistical model validation aims to accomplish many important tasks, including (a) assessment of the logical defensibility of proposed models, (b) assessment of the transferability of models over future time periods and across different geographic locations, and (c) identification of areas in which future model improvements should be made. These three activities are reported for five proposed types of rural intersection crash prediction models. The internal validation of the model revealed that the crash models potentially suffer from omitted variables that affect safety, site selection and countermeasure selection bias, poorly measured and surrogate variables, and misspecification of model functional forms. The external validation indicated the inability of models to perform on par with model estimation performance. Recommendations for improving the state of the practice from this research include the systematic conduct of carefully designed before-and-after studies, improvements in data standardization and collection practices, and the development of analytical methods to combine the results of before-and-after studies with cross-sectional studies in a meaningful and useful way.
Resumo:
One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.
Resumo:
Persistent use of safety restraints prevents deaths and reduces the severity and number of injuries resulting from motor vehicle crashes. However, safety-restraint use rates in the United States have been below those of other nations with safety-restraint enforcement laws. With a better understanding of the relationship between safety-restraint law enforcement and safety-restraint use, programs can be implemented to decrease the number of deaths and injuries resulting from motor vehicle crashes. Does safety-restraint use increase as enforcement increases? Do motorists increase their safety-restraint use in response to the general presence of law enforcement or to targeted law enforcement efforts? Does a relationship between enforcement and restraint use exist at the countywide level? A logistic regression model was estimated by using county-level safety-restraint use data and traffic citation statistics collected in 13 counties within the state of Florida in 1997. The model results suggest that safety-restraint use is positively correlated with enforcement intensity, is negatively correlated with safety-restraint enforcement coverage (in lanemiles of enforcement coverage), and is greater in urban than rural areas. The quantification of these relationships may assist Florida and other law enforcement agencies in raising safety-restraint use rates by allocating limited funds more efficiently either by allocating additional time for enforcement activities of the existing force or by increasing enforcement staff. In addition, the research supports a commonsense notion that enforcement activities do result in behavioral response.
Resumo:
Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites
Resumo:
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.
Resumo:
It is important to examine the nature of the relationships between roadway, environmental, and traffic factors and motor vehicle crashes, with the aim to improve the collective understanding of causal mechanisms involved in crashes and to better predict their occurrence. Statistical models of motor vehicle crashes are one path of inquiry often used to gain these initial insights. Recent efforts have focused on the estimation of negative binomial and Poisson regression models (and related deviants) due to their relatively good fit to crash data. Of course analysts constantly seek methods that offer greater consistency with the data generating mechanism (motor vehicle crashes in this case), provide better statistical fit, and provide insight into data structure that was previously unavailable. One such opportunity exists with some types of crash data, in particular crash-level data that are collected across roadway segments, intersections, etc. It is argued in this paper that some crash data possess hierarchical structure that has not routinely been exploited. This paper describes the application of binomial multilevel models of crash types using 548 motor vehicle crashes collected from 91 two-lane rural intersections in the state of Georgia. Crash prediction models are estimated for angle, rear-end, and sideswipe (both same direction and opposite direction) crashes. The contributions of the paper are the realization of hierarchical data structure and the application of a theoretically appealing and suitable analysis approach for multilevel data, yielding insights into intersection-related crashes by crash type.
Resumo:
Understanding the expected safety performance of rural signalized intersections is critical for (a) identifying high-risk sites where the observed safety performance is substantially worse than the expected safety performance, (b) understanding influential factors associated with crashes, and (c) predicting the future performance of sites and helping plan safety-enhancing activities. These three critical activities are routinely conducted for safety management and planning purposes in jurisdictions throughout the United States and around the world. This paper aims to develop baseline expected safety performance functions of rural signalized intersections in South Korea, which to date have not yet been established or reported in the literature. Data are examined from numerous locations within South Korea for both three-legged and four-legged configurations. The safety effects of a host of operational and geometric variables on the safety performance of these sites are also examined. In addition, supplementary tables and graphs are developed for comparing the baseline safety performance of sites with various geometric and operational features. These graphs identify how various factors are associated with safety. The expected safety prediction tables offer advantages over regression prediction equations by allowing the safety manager to isolate specific features of the intersections and examine their impact on expected safety. The examination of the expected safety performance tables through illustrated examples highlights the need to correct for regression-to-the-mean effects, emphasizes the negative impacts of multicollinearity, shows why multivariate models do not translate well to accident modification factors, and illuminates the need to examine road safety carefully and methodically. Caveats are provided on the use of the safety performance prediction graphs developed in this paper.
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.
Resumo:
Background: Poor feeding practices in early childhood contribute to the burden of childhood malnutrition and morbidity. Objective: To estimate the key indicators of breastfeeding and complementary feeding and the determinants of selected feeding practices in Sri Lanka. Methods: The sample consisted of 1,127 children aged 0 to 23 months from the Sri Lanka Demographic and Health Survey 2000. The key infant feeding indicators were estimated and selected indicators were examined against a set of individual-, household-, and community- level variables using univariate and multivariate analyses. Results: Breastfeeding was initiated within the first hour after birth in 56.3% of infants, 99.7% had ever been breastfed, 85.0% were currently being breastfed, and 27.2% were being bottle-fed. Of infants under 6 months of age, 60.6% were fully breastfed, and of those aged 6 to 9 months, 93.4% received complementary foods. The likelihood of not initiating breastfeeding within the first hour after birth was higher for mothers who underwent cesarean delivery (OR = 3.23) and those who were not visited by a Public Health Midwife at home during pregnancy (OR = 1.81). The rate of full breastfeeding was significantly lower among mothers who did not receive postnatal home visits by a Public Health Midwife. Bottlefeeding rates were higher among infants whose mothers had ever been employed (OR = 1.86), lived in a metropolitan area (OR = 3.99), or lived in the South-Central Hill country (OR = 3.11) and were lower among infants of mothers with secondary education (OR = 0.27). Infants from the urban (OR = 8.06) and tea estate (OR = 12.63) sectors were less likely to receive timely complementary feeding than rural infants. Conclusions: Antenatal and postnatal contacts with Public Health Midwives were associated with improved breastfeeding practices. Breastfeeding promotion strategies should specifically focus on the estate and urban or metropolitan communities.
Resumo:
Rural-urban migration continues to grow in many developing countries including Vietnam. The experience of stress and coping associated with this process may vary for people from different circumstances. However, there has been little research on migrants to date. This study adopts a qualitative approach to research on unregistered, male, migrant freelance labourers in urban Vietnam and to explore factors contributing to stress and coping among this population. The study revealed an array of stressors related to migrants' life experiences in urban space, including physical, financial and social factors. Coping was diverse, including problem-focused coping (PFC) and emotion-focused coping (EFC), pro-social and anti-social, active and passive. Less active and anti-social coping appeared common. Together, weak social network and lack of support from formal systems placed coping and adaptation in a cyclic relationship. The results highlight a multi-disciplinary approach to help cope and adapt effectively for these men.
Resumo:
Background and Aim: To investigate participation in a second round of colorectal cancer screening using a fecal occult blood test (FOBT) in an Australian rural community, and to assess the demographic characteristics and individual perspectives associated with repeat screening. ---------- Methods: Potential participants from round 1 (50–74 years of age) were sent an intervention package and asked to return a completed FOBT (n = 3406). Doctors of participants testing positive referred to colonoscopy as appropriate. Following screening, 119 participants completed qualitative telephone interviews. Multivariable logistic regression models evaluated the association between round-2 participation and other variables.---------- Results: Round-2 participation was 34.7%; the strongest predictor was participation in round 1. Repeat participants were more likely to be female; inconsistent screeners were more likely to be younger (aged 50–59 years). The proportion of positive FOBT was 12.7%, that of colonoscopy compliance was 98.6%, and the positive predictive value for cancer or adenoma of advanced pathology was 23.9%. Reasons for participation included testing as a precautionary measure or having family history/friends with colorectal cancer; reasons for non-participation included apathy or doctors’ advice against screening.---------- Conclusion: Participation was relatively low and consistent across rounds. Unless suitable strategies are identified to overcome behavioral trends and/or to screen out ineligible participants, little change in overall participation rates can be expected across rounds.
Resumo:
Background: There has been a lack of investigation into the spatial distribution and clustering of suicide in Australia, where the population density is lower than many countries and varies dramatically among urban, rural and remote areas. This study aims to examine the spatial distribution of suicide at a Local Governmental Area (LGA) level and identify the LGAs with a high relative risk of suicide in Queensland, Australia, using geographical information system (GIS) techniques.---------- Methods: Data on suicide and demographic variables in each LGA between 1999 and 2003 were acquired from the Australian Bureau of Statistics. An age standardised mortality (ASM) rate for suicide was calculated at the LGA level. GIS techniques were used to examine the geographical difference of suicide across different areas.---------- Results: Far north and north-eastern Queensland (i.e., Cook and Mornington Shires) had the highest suicide incidence in both genders, while the south-western areas (i.e., Barcoo and Bauhinia Shires) had the lowest incidence in both genders. In different age groups (≤24 years, 25 to 44 years, 45 to 64 years, and ≥65 years), ASM rates of suicide varied with gender at the LGA level. Mornington and six other LGAs with low socioeconomic status in the upper Southeast had significant spatial clusters of high suicide risk.---------- Conclusions: There was a notable difference in ASM rates of suicide at the LGA level in Queensland. Some LGAs had significant spatial clusters of high suicide risk. The determinants of the geographical difference of suicide should be addressed in future research.
Resumo:
This paper presents findings from the rural and remote road safety study, conducted in Queensland, Australia, from March 2004 till June 2007, and compares fatal crashes and non-fatal but serious crashes in respect of their environmental, vehicle and operator factors. During the study period there were 613 non-fatal crashes resulting in 684 hospitalised casualties and 119 fatal crashes resulting in 130 fatalities. Additional information from police sources was available on 103 fatal and 309 non-fatal serious crashes. Over three quarters of both fatal and hospitalised casualties were male and the median age in both groups was 34 years. Fatal crashes were more likely to involve speed, alcohol and violations of road rules and fatal crash victims were 2 and a 1/2 times more likely to be unrestrained inside the vehicle than non-fatal casualties, consistent with current international evidence. After controlling for human factors, vehicle and road conditions made a minimal contribution to the seriousness of the crash outcome. Targeted interventions to prevent fatalities on rural and remote roads should focus on reducing speed and drink driving and promoting seatbelt wearing.
Resumo:
The rural two-lane highway in the southeastern United States is frequently associated with a disproportionate number of serious and fatal crashes and as such remains a focus of considerable safety research. The Georgia Department of Transportation spearheaded a regional fatal crash analysis to identify various safety performances of two-lane rural highways and to offer guidance for identifying suitable countermeasures with which to mitigate fatal crashes. The fatal crash data used in this study were compiled from Alabama, Georgia, Mississippi, and South Carolina. The database, developed for an earlier study, included 557 randomly selected fatal crashes from 1997 or 1998 or both (this varied by state). Each participating state identified the candidate crashes and performed physical or video site visits to construct crash databases with enhance site-specific information. Motivated by the hypothesis that single- and multiple-vehicle crashes arise from fundamentally different circumstances, the research team applied binary logit models to predict the probability that a fatal crash is a single-vehicle run-off-road fatal crash given roadway design characteristics, roadside environment features, and traffic conditions proximal to the crash site. A wide variety of factors appears to influence or be associated with single-vehicle fatal crashes. In a model transferability assessment, the authors determined that lane width, horizontal curvature, and ambient lighting are the only three significant variables that are consistent for single-vehicle run-off-road crashes for all study locations.