899 resultados para response surface methodology (RSM)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This present study compares the efficacy of microsphere formulations, and their method of antigen presentation, for the delivery of the TB sub-unit vaccine antigen, Ag85B-ESAT-6. Microspheres based on poly(lactide-co-glycolide) (PLGA) and chitosan incorporating dimethyldioctadecylammonium bromide (DDA) were prepared by either the w/o/w double emulsion method (entrapped antigen) or the o/w single emulsion method (surface bound antigen), and characterised for their physico-chemical properties and their ability to promote an immune response to Ag85B-ESAT-6. The method of preparation, and hence method of antigen association, had a pronounced effect on the type of immune response achieved from the microsphere formulations, with surface bound antigen favouring a humoural response, whereas entrapped antigen favoured a cellular response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This present study compares the efficacy of microsphere formulations, and their method of antigen presentation, for the delivery of the TB sub-unit vaccine antigen, Ag85B-ESAT-6. Microspheres based on poly(lactide-co-glycolide) (PLGA) and chitosan incorporating dimethyldioctadecylammonium bromide (DDA) were prepared by either the w/o/w double emulsion method (entrapped antigen) or the o/w single emulsion method (surface bound antigen), and characterised for their physico-chemical properties and their ability to promote an immune response to Ag85B-ESAT-6. The method of preparation, and hence method of antigen association, had a pronounced effect on the type of immune response achieved from the microsphere formulations, with surface bound antigen favouring a humoural response, whereas entrapped antigen favoured a cellular response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2014

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the modification of the optical properties of carbon nanotubes (CNTs) resulting from a chemical reaction triggered by the presence of a specific compound (gaseous carbon dioxide (CO2)) and show this mechanism has important consequences for chemical sensing. CNTs have attracted significant research interest because they can be functionalized for a particular chemical, yielding a specific physical response which suggests many potential applications in the fields of nanotechnology and sensing. So far, however, utilizing their optical properties for this purpose has proven to be challenging. We demonstrate the use of localized surface plasmons generated on a nanostructured thin film, resembling a large array of nano-wires, to detect changes in the optical properties of the CNTs. Chemical selectivity is demonstrated using CO2 in gaseous form at room temperature. The demonstrated methodology results additionally in a new, electrically passive, optical sensing configuration that opens up the possibilities of using CNTs as sensors in hazardous/explosive environments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Biotribology is essentially the study of friction, lubrication and wear in biological systems. The area has been widely studied in relation to the behaviour of synovial joints and the design and behaviour of hip joint prostheses, but only in the last decade have serious studies been extended to the eye. In the ocular environment - as distinct from articular joints - wear is not a major factor. Both lubrication and friction are extremely important, however; this is particularly the case in the presence of the contact lens, which is a medical device important not only in vision correction but also as a therapeutic bandage for the compromised cornea. This chapter describes the difficulty in replicating experimental conditions that accurately reflect the complex nature of the ocular environment together with the factors such as load and rate of travel of the eyelid, which is the principal moving surface in the eye. Results obtained across a range of laboratories are compared.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The overarching goal of this research is to establish a successful forum for a transition from the existing paradigm of managing wastewater infrastructure to a more sustainable paradigm that achieves a more efficient utilisation of wastewater assets. A transitioning approach to support a more efficient utilisation of surface water and wastewater assets and infrastructure is proposed and developed. The determined transitioning approach possesses key stages namely developing the arena, developing the agenda, case study, and monitoring. The case study stage investigates a drainage utility identifying their improvement drivers, the removal of surface water through detailed drainage modelling and the financial examination of the costs incurred under the various scenarios conducted. Understanding the implications of removing/attenuating surface water from the network is improved through obtaining data by detailed drainage modelling. Infoworks software is used to investigate and assess the current and future operational scenarios of a wastewater system operating over one calendar year. Modelling scenarios were conducted removing surface water from selected areas focusing on the volumes requiring pumping and durations of pumping station(s) operation prior to treatment during storm conditions. The financial implication of removing surface water in combined sewer systems is examined in three main components. Firstly the costs of electricity incurred at the single sewage pumping station (SPS) investigated during the various scenarios modelled require to be addressed. Secondly the costs to retrofit sustainable urban drainage system (SUDS) solutions needs to be identified. Thirdly the implications of removing surface water for the drainage utility at the national level and the potential saving for householder’s committing to a surface water disconnection rebate scheme. When addressed at the macro level i.e., with over 2,100 pumping stations, some operating in sequence and contained within one drainage utility annually treating 315,360 megalitres the significance of the same multiple quantifiable and intangible benefits becomes amplified. The research aims, objectives and findings are presented to the identified and convened stakeholders. The transitioning approach developed encourages positive discourse between stakeholders. The level of success of the transitioning approach determined is then tested using a quantitative methodology through the completion of questionnaires. From the questionnaires completed the respondents unanimously agreed that surface water flows should be removed as well as reduced from the combined sewer system. The respondents agreed that the removal of surface water from a typical combined sewer system is justified by applying a transitioning approach focusing on the energy consumption required to pump increased volumes during storm events. This response is significant based upon the economic evidence and is contrary to the respondents previous position that finance was their most influencing factor. When provided with other potentially available benefits the respondents were even more supportive of the justification to remove surface water from the combined sewer system. The combined findings of the work presented in this thesis provide further justification that the transitioning approach applied to the removal of surface water from a typical combined sewer system, as determined in this research has been successful.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The heart is a non-regenerating organ that gradually suffers a loss of cardiac cells and functionality. Given the scarcity of organ donors and complications in existing medical implantation solutions, it is desired to engineer a three-dimensional architecture to successfully control the cardiac cells in vitro and yield true myocardial structures similar to native heart. This thesis investigates the synthesis of a biocompatible gelatin methacrylate hydrogel to promote growth of cardiac cells using biotechnology methodology: surface acoustic waves, to create cell sheets. Firstly, the synthesis of a photo-crosslinkable gelatin methacrylate (GelMA) hydrogel was investigated with different degree of methacrylation concentration. The porous matrix of the hydrogel should be biocompatible, allow cell-cell interaction and promote cell adhesion for growth through the porous network of matrix. The rheological properties, such as polymer concentration, ultraviolet exposure time, viscosity, elasticity and swelling characteristics of the hydrogel were investigated. In tissue engineering hydrogels have been used for embedding cells to mimic native microenvironments while controlling the mechanical properties. Gelatin methacrylate hydrogels have the advantage of allowing such control of mechanical properties in addition to easy compatibility with Lab-on-a-chip methodologies. Secondly in this thesis, standing surface acoustic waves were used to control the degree of movement of cells in the hydrogel and produce three-dimensional engineered scaffolds to investigate in-vitro studies of cardiac muscle electrophysiology and cardiac tissue engineering therapies for myocardial infarction. The acoustic waves were characterized on a piezoelectric substrate, lithium niobate that was micro-fabricated with slanted-finger interdigitated transducers for to generate waves at multiple wavelengths. This characterization successfully created three-dimensional micro-patterning of cells in the constructs through means of one- and two-dimensional non-invasive forces. The micro-patterning was controlled by tuning different input frequencies that allowed manipulation of the cells spatially without any pre- treatment of cells, hydrogel or substrate. This resulted in a synchronous heartbeat being produced in the hydrogel construct. To complement these mechanical forces, work in dielectrophoresis was conducted centred on a method to pattern micro-particles. Although manipulation of particles were shown, difficulties were encountered concerning the close proximity of particles and hydrogel to the microfabricated electrode arrays, dependence on conductivity of hydrogel and difficult manoeuvrability of scaffold from the surface of electrodes precluded measurements on cardiac cells. In addition, COMSOL Multiphysics software was used to investigate the mechanical and electrical forces theoretically acting on the cells. Thirdly, in this thesis the cardiac electrophysiology was investigated using immunostaining techniques to visualize the growth of sarcomeres and gap junctions that promote cell-cell interaction and excitation-contraction of heart muscles. The physiological response of beating of co-cultured cardiomyocytes and cardiac fibroblasts was observed in a synchronous and simultaneous manner closely mimicking the native cardiac impulses. Further investigations were carried out by mechanically stimulating the cells in the three-dimensional hydrogel using standing surface acoustic waves and comparing with traditional two-dimensional flat surface coated with fibronectin. The electrophysiological responses of the cells under the effect of the mechanical stimulations yielded a higher magnitude of contractility, action potential and calcium transient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poly(aryl-ether-ether-ketone) (PEEK) is a semi crystalline polymer which exhibits properties that make it an attractive choice for use as an implant material. It displays natural radiolucency, and MRI compatibility, as well as good chemical and sterilization resistance, both of which make it of particular interest in orthopaedic implants. However, PEEK has demonstrated poor cellular adhesion both in vitro and in vivo. This is problematic as implant surfaces that do not develop a layer of adhesive cells are at risk of undergoing fibrous encapsulation, which in turn leads to lack of a strong interface between the implant device and the patient tissue, which can in turn lead to failure of the implant and revision surgery . As incorporating nanotopography into a polymer surface has been demonstrated to be able to direct the differentiation behaviour of stem cells, a possible solution to PEEKs underlying issues with poor cellular response would be to incorporate specific nanoscale topography into the material surface through injection moulding, and then analysing if this is a viable method for addressing PEEKs issues with cellular response. In addition to nanoscale topography, the experimental PEEK surfaces were treated with oxygen plasma to address the underlying cytophobicity of the material. As this type of treatment has been documented to be capable of etching the PEEK surface, experiments were carried out to quantify the effect of this treatment, both on the ability of cells to adhere to the PEEK surface, as well as the effect it has upon the nanotopography present at the PEEK surface. The results demonstrated that there were a range of plasma treatments which would significantly improve the ability of cells to adhere to the PEEK surface without causing unacceptable damage to the nanotopography. Three different types of cells with osteogenic capacity were tested with the PEEK surfaces to gauge the ability of the topography to alter their behaviour: SAOS-2, osteoprogenitors and 271+ MSCs. Due to PEEKs material properties (it is non transparent, exhibits birefringence and is strongly autofluorescent) a number of histological techniques were used to investigate a number of different stages that take place in osteogenesis. The different cell types did display slightly different responses to the topographies. The SAOS-2 cells cultured on surfaces that had been plasma treated for 2 minutes at 200W had statistically significantly higher levels of von Kossa staining on the NSQ surface compared to the planar surface, and the same experiment employing alizarin red staining, showed a statistically significantly lower level of staining on the SQ surface compared to the planar surface. Using primary osteoprogenitor cells designed to look into if whether or not the presence of nanotopography effected the osteogenic response of these cells, we saw a lack of statistically significant difference produced by the surfaces investigated. By utilising HRP based immunostaining, we were able to investigate, in a quantitative fashion, the production of the two osteogenic markers osteopontin and osteocalcin by cells. When stained for osteocalcin, the SQ nanotopography had total percentage of the surface with stained material, average area and average perimeter all statistically significantly lower than the planar surface. For the cells that were stained for osteopontin, the SQ nanotopgraphy had a total percentage of the surface with stained material, average area and average perimeter all highly statistically significantly lower than those of the planar surface. Additionally, for this marker the NSQ nanotopography had average areas and average perimeters that were highly significantly higher than those of the planar surface. There were no significant differences for any of the values investigated for the 271+ MSC’s When plasma treatment was varied, the SAOS-2 cells demonstrated an overall trend i.e. increasing the energy of plasma treatment in turn leads to an increase in the overall percentage of staining. A similar experiment employing stem cells isolated from human bone marrow instead of SAOS-2 cells showed that for polycarbonate surfaces , used as a control, mineralization is statistically significantly higher on the NSQ nanopattern compared to the planar surface, whereas on the PEEK surfaces we observe the opposite trend i.e. the NSQ nanotopography having a statistically significantly lower amount of mineralization compared to the planar surface at the 200W 2min and 30W 1min plasma treatments. The standout trend from the PEEK results in this experiment was that the statistically significant differences on the PEEK substrates were clustered around the lower energy plasma treatments, which could suggest that the plasma treatment disrupted a function of the nanotopograhy which is why, as the energy increases, there are less statistically significant differences between the NSQ nanotopography and the Planar surface This thesis documents the response of a number of different types of cells to specific nanoscale topographies incorporated into the PEEK surface which had been treated with oxygen plasma. It outlines the development of a number of histological methods which measure different aspects of osteogenesis, and were selected to both work with PEEK, and produce quantitative results through the use of Cell Profiler. The methods that have been employed in this body of work would be of interest to other researchers working with this material, as well as those working with similarly autofluorescent materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to develop the methodology and strategy for concurrent finite element modeling of civil infrastructures at the different scale levels for the purposes of analyses of structural deteriorating. The modeling strategy and method were investigated to develop the concurrent multi-scale model of structural behavior (CMSM-of-SB) in which the global structural behavior and nonlinear damage features of local details in a large complicated structure could be concurrently analyzed in order to meet the needs of structural-state evaluation as well as structural deteriorating. In the proposed method, the “large-scale” modeling is adopted for the global structure with linear responses between stress and strain and the “small-scale” modeling is available for nonlinear damage analyses of the local welded details. A longitudinal truss in steel bridge decks was selected as a case to study how a CMSM-of-SB was developed. The reduced-scale specimen of the longitudinal truss was studied in the laboratory to measure its dynamic and static behavior in global truss and local welded details, while the multi-scale models using constraint equations and substructuring were developed for numerical simulation. The comparison of dynamic and static response between the calculated results by different models indicated that the proposed multi-scale model was found to be the most efficient and accurate. The verification of the model with results from the tested truss under the specific loading showed that, responses at the material scale in the vicinity of local details as well as structural global behaviors could be obtained and fit well with the measured results. The proposed concurrent multi-scale modeling strategy and implementation procedures were applied to Runyang cable-stayed bridge (RYCB) and the CMSM-of-SB of the bridge deck system was accordingly constructed as a practical application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This practice-led research project examines some of the factors and issues facing artists working in the public domain who wish to engage with the community as audience. Using the methodology of action research, the three major creative projects in this study use art as a socio-political tool with the aim of providing an effective vehicle for broadening awareness, understanding forms of social protest and increasing tolerance for diversity. The three projects: Floodline November 7, 2004, Look in, Look out, and The Urban Terrorist Project, dealt with issues of marginalisation of communities, audiences and graffiti artists respectively. The artist/researcher is outlined as both creator and collaborator in the work. Processes included ephemeral elements, such as temporary installation and performance, as well as interactive elements that encouraged direct audience involvement as part of the work. In addition to the roles of creator and collaborator, both of which included audience as well as artist, the presence of an outside entity was evident. Whether local, legal authorities or prevailing attitudes, outside entities had an unavoidable impact on the processes and outcomes of the work. Each project elicited a range of responses from their respective audiences; however, the overarching concept of reciprocity was seen to be the crucial factor in conception, artistic methods and outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: A population based, cross-sectional telephone survey was conducted to estimate the total penetrance of contact lens wear in Australia. Methods: A total of 42,749 households around Australia were randomly selected from the national electronic telephone directory based on postcode distribution. Before contact was attempted, letters of introduction were sent. The number of individuals and contact lens wearers in each household was ascertained and lens wearers were interviewed to determine details of lens type and mode of wear using a structured questionnaire. Results: Of households contacted, 59.2% (19,171/32,405) agreed to participate. Response rates were only marginally higher amongst households that first received a letter of introduction. In these households, 35,914 individuals were identified, of which, 1,798 were contact lens wearers. The penetrance of contact lens wear during the study period was 5.01% (95% CI: 4.78-5.24). Soft hydrogel lenses had the largest penetrance in the community, (66.7% of all wearers), however, their market share decreased significantly over the study period with increased uptake of newly introduced lens types. Conclusions: The penetrance of contact lens wear concurs with market estimates and equates to approximately 680,000 contact lens wearers aged between 15 and 64 years in Australia. The low response rate obtained in this study highlights the difficulty in contemporary use of telephone survey methodology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analytical and computational models of the intervertebral disc (IVD) are commonly employed to enhance understanding of the biomechanics of the human spine and spinal motion segments. The accuracy of these models in predicting physiological behaviour of the spine is intrinsically reliant on the accuracy of the material constitutive representations employed to represent the spinal tissues. There is a paucity of detailed mechanical data describing the material response of the reinforced­ground matrix in the anulus fibrosus of the IVD. In the present study, the ‘reinforced­ground matrix’ was defined as the matrix with the collagen fibres embedded but not actively bearing axial load, thus incorporating the contribution of the fibre-fibre and fibre-matrix interactions. To determine mechanical parameters for the anulus ground matrix, mechanical tests were carried out on specimens of ovine anulus, under unconfined uniaxial compression, simple shear and biaxial compression. Test specimens of ovine anulus fibrosus were obtained with an adjacent layer of vertebral bone/cartilage on the superior and inferior specimen surface. Specimen geometry was such that there were no continuous collagen fibres coupling the two endplates. Samples were subdivided according to disc region - anterior, lateral and posterior - to determine the regional inhomogeneity in the anulus mechanical response. Specimens were loaded at a strain rate sufficient to avoid fluid outflow from the tissue and typical stress-strain responses under the initial load application and under repeated loading were determined for each of the three loading types. The response of the anulus tissue to the initial and repeated load cycles was significantly different for all load types, except biaxial compression in the anterior anulus. Since the maximum applied strain exceeded the damage strain for the tissue, experimental results for repeated loading reflected the mechanical ability of the tissue to carry load, subsequent to the initiation of damage. To our knowledge, this is the first study to provide experimental data describing the response of the ‘reinforced­ground matrix’ to biaxial compression. Additionally, it is novel in defining a study objective to determine the regionally inhomogeneous response of the ‘reinforced­ground matrix’ under an extensive range of loading conditions suitable for mechanical characterisation of the tissue. The results presented facilitate the development of more detailed and comprehensive constitutive descriptions for the large strain nonlinear elastic or hyperelastic response of the anulus ground matrix.