904 resultados para reniform nematode


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oceans in their expanse cover, seven - tenths of the Earth surface. Despite being restricted in size, the littoral zone or the intertidal zone (beach) has the greatest variation in environment factors of any marine area .Stemming from this variation ,a treamendous diversity of life, which may be great as or greater than that found in the more extensive sub tidal habits exist in this realm. the study beaches harbour diverse and abundant assemblage of marine organisms. Besides macro funna, microscopic organisms belonging to the lower and higher invertebrate taxa profusely inhabit these beaches. The ecological realm where these animals exist is known as the interstitial environment, which in principle includes the pore spaces in between the sand grains containing copious supply of nutrient rich oxygenated seawater. An astonishing diversity of taxa could be found within the interstitial fauna.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genus Vibrioof the family Vibrionaceae are Gram negative, oxidasepositive, rod- or curved- rodshaped facultative anaerobes, widespread in marine and estuarine environments. Vibrio species are opportunistic human pathogens responsible for diarrhoeal disease, gastroenteritis, septicaemia and wound infections and are also pathogens of aquatic organisms, causing infections to crustaceans, bivalves and fishes. In the present study, marine environmental samples like seafood and water and sediment samples from aquafarms and mangroves were screened for the presence of Vibrio species. Of the134 isolates obtained from the various samples, 45 were segregated to the genus Vibrio on the basis of phenotypic characterization.like Gram staining, oxidase test, MoF test and salinity tolerance. Partial 16S rDNA sequence analysis was utilized for species level identification of the isolates and the strains were identified as V. cholerae(N=21), V. vulnificus(N=18), V. parahaemolyticus(N=3), V. alginolyticus (N=2) and V. azureus (N=1). The genetic relatedness and variations among the 45 Vibrio isolates were elucidated based on 16S rDNA sequences. Phenotypic characterization of the isolates was based on their response to 12 biochemical tests namely Voges-Proskauers’s (VP test), arginine dihydrolase , tolerance to 3% NaCl test, ONPG test that detects β-galactosidase activity, and tests for utilization of citrate, ornithine, mannitol, arabinose, sucrose, glucose, salicin and cellobiose. The isolates exhibited diverse biochemical patterns, some specific for the species and others indicative of their environmental source.Antibiogram for the isolates was determined subsequent to testing their susceptibility to 12 antibiotics by the disc diffusion method. Varying degrees of resistance to gentamycin (2.22%), ampicillin(62.22%), nalidixic acid (4.44%), vancomycin (86.66), cefixime (17.77%), rifampicin (20%), tetracycline (42.22%) and chloramphenicol (2.22%) was exhibited. All the isolates were susceptible to streptomycin, co-trimoxazole, trimethoprim and azithromycin. Isolates from all the three marine environments exhibited multiple antibiotic resistance, with high MAR index value. The molecular typing methods such as ERIC PCR and BOX PCR revealed intraspecies relatedness and genetic heterogeneity within the environmental isolatesof V. cholerae and V. vulnificus. The 21 strains of V. choleraewere serogroupedas non O1/ non O139 by screening for the presence O1rfb and O139 rfb marker genes by PCR. The virulence/virulence associated genes namely ctxA, ctxB, ace, VPI, hlyA, ompU, rtxA, toxR, zot, nagst, tcpA, nin and nanwere screened in V. cholerae and V. vulnificusstrains.The V. vulnificusstrains were also screened for three species specific genes viz., cps, vvhand viu. In V. cholerae strains, the virulence associated genes like VPI, hlyA, rtxA, ompU and toxR were confirmed by PCR. All the isolates, except for strain BTOS6, harbored at least one or a combination of the tested genes and V. choleraestrain BTPR5 isolated from prawn hosted the highest number of virulence associated genes. Among the V. vulnificusstrains, only 3 virulence genes, VPI, toxR and cps, were confirmed out of the 16 tested and only 7 of the isolates had these genes in one or more combinations. Strain BTPS6 from aquafarm and strain BTVE4 from mangrove samples yielded positive amplification for the three genes. The toxRgene from 9 strains of V. choleraeand 3 strains of V. vulnificus were cloned and sequenced for phylogenetic analysis based on nucleotide and the amino acid sequences. Multiple sequence alignment of the nucleotide sequences and amino acid sequences of the environmental strains of V. choleraerevealed that the toxRgene in the environmental strains are 100% homologous to themselves and to the V. choleraetoxR gene sequence available in the Genbank database. The 3 strains of V. vulnificus displayed high nucleotide and amino acid sequence similarity among themselves and to the sequences of V. cholerae and V. harveyi obtained from the GenBank database, but exhibited only 72% homology to the sequences of its close relative V. vulnificus. Structure prediction of the ToxR protein of Vibrio cholerae strain BTMA5 was by PHYRE2 software. The deduced amino acid sequence showed maximum resemblance with the structure of DNA-binding domain of response regulator2 from Escherichia coli k-12 Template based homology modelling in PHYRE2 successfully modelled the predicted protein and its secondary structure based on protein data bank (PDB) template c3zq7A. The pathogenicity studies were performed using the nematode Caenorhabditiselegansas a model system. The assessment of pathogenicity of environmental strain of V. choleraewas conducted with E. coli strain OP50 as the food source in control plates, environmental V. cholerae strain BTOS6, negative for all tested virulence genes, to check for the suitability of Vibrio sp. as a food source for the nematode;V. cholerae Co 366 ElTor, a clinical pathogenic strain and V. cholerae strain BTPR5 from seafood (Prawn) and positive for the tested virulence genes like VPI, hlyA, ompU,rtxA and toxR. It was found that V. cholerae strain BTOS6 could serve as a food source in place of E. coli strain OP50 but behavioral aberrations like sluggish movement and lawn avoidance and morphological abnormalities like pharyngeal and intestinal distensions and bagging were exhibited by the worms fed on V. cholerae Co 366 ElTor strain and environmental BTPR5 indicating their pathogenicity to the nematode. Assessment of pathogenicity of the environmental strains of V. vulnificus was performed with V. vulnificus strain BTPS6 which tested positive for 3 virulence genes, namely, cps, toxRand VPI, and V. vulnificus strain BTMM7 that did not possess any of the tested virulence genes. A reduction was observed in the life span of worms fed on environmental strain of V. vulnificusBTMM7 rather than on the ordinary laboratory food source, E. coli OP50. Behavioral abnormalities like sluggish movement, lawn avoidance and bagging were also observed in the worms fed with strain BTPS6, but the pharynx and the intestine were intact. The presence of multi drug resistant environmental Vibrio strainsthat constitute a major reservoir of diverse virulence genes are to be dealt with caution as they play a decisive role in pathogenicity and horizontal gene transfer in the marine environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On-farm experiments and pot trials were conducted on eight West African soils to explore the mechanisms governing the often reported legume rotation-induced cereal growth increases in this region. Crops comprised pearl millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor Moench), maize (Zea mays L.), cowpea (Vigna unguiculata Walp.) and groundnut (Arachis hypogaea L.). In groundnut trials the observed 26 to 85% increases in total dry matter (TDM) of rotation cereals (RC) compared with continuous cereals (CC) in the 4th year appeared to be triggered by site- and crop-specific early season differences in nematode infestation (up to 6-fold lower in RC than in CC), enhanced Nmin and a 7% increase in mycorrhizal (AM) infection. In cowpea trials yield effects on millet and differences in nematode numbers, Nmin and AM were much smaller. Rhizosphere studies indicated effects on pH and acid phosphatase activity as secondary causes for the observed growth differences between RC and CC. In the study region legume-rotation effects on cereals seemed to depend on the capability of the legume to suppress nematodes and to enhance early N and P availability for the subsequent cereal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dieser Arbeit sollten neue Interaktionspartner der regulatorischen Untereinheit (R-UE) der Proteinkinase A (PKA) und des Modellorganismus C. elegans identifiziert und funktionell charakterisiert werden. Im Gegensatz zu Säugern (vier Isoformen), exprimiert der Nematode nur eine PKA-R-Isoform. Mittels in silico Analysen und so genannten „Pulldown“ Experimenten, wurde insbesondere nach A Kinase Ankerproteinen (AKAP) in C. elegans gesucht. Aus in silico Recherchen resultiert das rgs5 Protein als mögliches Funktionshomolog des humanen AKAP10. Rgs5 enthält eine potenzielle, amphipathische Helix (AS 421-446, SwissProt ID A9Z1K0), die in Peptide-SPOT-Arrays (durchgeführt im Biotechnologie Zentrum in Oslo, AG Prof. K. Taskén) eine Bindung an RI und RII-UE zeigt. Eine ähnliche Lokalisation von rgs5 und hAKAP10 in der Zelle, sowie vergleichende BRET² Studien, weisen auf eine mögliche Funktionshomologie zwischen AKAP10 und rgs5 hin. Die hier durchgeführten Analysen deuten darauf hin, dass es sich bei rgs5 um ein neues, klassisches AKAP mit „RII bindender Domäne“ Motiv im Modellorganismus C. elegans handelt. Basierend auf so genannten „pulldown“ Versuchen können, neben „klassischen“ AKAPs (Interaktion über amphipathische Helices), auch Interaktionspartner ohne typische Helixmotive gefunden werden. Dazu gehört auch RACK1, ein multifunktionales Protein mit 7 WD40 Domänen, das ubiquitär exprimiert wird und bereits mehr als 70 Interaktionspartner in unterschiedlichsten Signalwegen komplexiert (Adams et al., 2011). Durch BRET² Interaktionsstudien und Oberflächenplasmonresonanz (SPR) Analysen konnten hRI und kin2 als spezifische Interaktionspartner von RACK1 verifiziert werden. Untersuchungen zur Identifikation der Interaktionsflächen der beiden Proteine RACK1 und hRI zeigten im BRET² System, dass RACK1 über die WD40 Domänen 1-2 und 6-7 interagiert. Die Analyse unterschiedlicher hRI-Deletionsmutanten deutet auf die DD-Domäne im N-Terminus und zusätzlich auf eine potenzielle BH3 Domäne im C-Terminus des Proteins als Interaktionsfläche mit RACK1 hin. Die Koexpression von hRI BH3 und RACK1 zeigt einen auffälligen ein Phänotyp in Cos7 Zellen. Dieser zeichnet sich unter anderem durch eine Degradation des Zellkerns, DNA Kondensation und eine starke Vakuolisierung aus, was beides als Anzeichen für einen programmierten Zelltod interpretiert werden könnte. Erste Untersuchungen zum Mechanismus des ausgelösten Zelltods deuten auf eine Caspase unabhängige Apoptose (Paraptose) hin und einen bislang unbekannten Funktionsmechanismus der PKA hin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Livestock production contributes substantially to the livelihoods of poor rural farmers in Pakistan; strengthening pastoral communities plays an imperative role in the country’s thrive for poverty alleviation. Intestinal helminths constitute a major threat for pastoral livestock keepers in the whole country because chronic infestation leads to distinct losses in livestock productivity, particularly the growth of young animals. Synthetic anthelmintics have long been considered the only effective way of controlling this problem but high prices, side effects and chemical residues/toxicity problems, or development of resistance, lead to their very limited use in many pastoral systems. Additionally, poor pastoralists in remote areas of Pakistan hardly have access to appropriate anthelmintic drugs, which are also relatively expensive due to the long routes of transportation. The search for new and more sustainable ways of supporting livestock keepers in remote areas has given rise to studies of ethno-botanicals or traditional plant-based remedies to be used in livestock health care. Plant-based remedies are cheap or free of cost, environmentally safe and generally create no problem of drug resistance; they thus might substitute allopathic drugs. Furthermore, these remedies are easily available in remote areas and simple to prepare and/or administer. Cholistan desert is a quite poor region of Pakistan and the majority of its inhabitants are practicing a nomadic life. The region’s total livestock population (1.29 million heads) is almost twice that of the human population. Livestock husbandry is the primordial occupation of the communities and traditionally wealth assessment was based on the number of animals, especially goats and sheep, owned by an individual. Fortunately, about 60% of this desert region is richly endowed with highly adapted grasses, shrubs and trees. This natural flora has a rich heritage of scientifically unexplored botanical pharmacopoeia. Against this background, the present research project that was conducted under the umbrella of the International Center for Development and Decent Work at Kassel University, focused on a development aspect: in the Cholistan desert region it was firstly examined how pastoralists manage their livestock, which major health problems they face for the different animal species, and which of the naturally occurring plants they use for the treatment of animal diseases (Chapter 2). For this purpose, a baseline survey was carried out across five locations in Cholistan, using a structured questionnaire to collect data from 100 livestock farmers (LF) and 20 local healers (LH). Most of LF and LH were illiterate (66%; 70%). On average, LH had larger herds (109 animals) than LF (85 animals) and were more experienced in livestock husbandry and management. On average LF spent about 163 Euro per year on the treatment of their livestock, with a huge variability in expenditures. Eighty-six traditional remedies based on 64 plants belonging to 43 families were used. Capparaceae was the botanical family with the largest number of species used (4), followed by Chenopodiaceae, Poaceae, Solanaceae and Zygophyllaceae (3). The plants Capparis decidua (n=55 mentions), Salsola foetida (n=52), Suaeda fruticosa (n=46), Haloxylon salicornicum (n=42) and Haloxylon recurvum (n=39) were said to be most effective against the infestations with gastrointestinal parasites. Aerial parts (43%), leaves (26%), fruits (9%), seeds and seed oils (9%) were the plant parts frequently used for preparation of remedies, while flowers, roots, bulbs and pods were less frequently used (<5%). Common preparations were decoction, jaggery and ball drench; oral drug administration was very common. There was some variation in the doses used for different animal species depending on age, size and physical condition of the animal and severity of the disease. In a second step the regionally most prevalent gastrointestinal parasites of sheep and goats were determined (Chapter 3) in 500 animals per species randomly chosen from pastoral herds across the previously studied five localities. Standard parasitological techniques were applied to identify the parasites in faecal samples manually collected at the rectum. Overall helminth prevalence was 78.1% across the 1000 animals; pure nematode infestations were most prevalent (37.5%), followed by pure trematode (7.9%), pure cestode (2.6%) and pure protozoa infestations (0.8%). Mixed infestations with nematodes and trematodes occurred in 6.4% of all animals, mixed nematode-cestode infestations in 3.8%, and all three groups were found in 19.1% of the sheep and goats. In goats more males (81.1%) than females (77.0%) were infested, the opposite was found in sheep (73.6% males, 79.5% females). Parasites were especially prevalent in suckling goats (85.2%) and sheep (88.5%) and to a lesser extent in young (goats 80.6%, sheep 79.3%) and adult animals (goats 72.8%, sheep 73.8%). Haemonchus contortus, Trichuris ovis and Paramphistomum cervi were the most prevalent helminths. In a third step the in vitro anthelmintic activity of C. decidua, S. foetida, S. fruticosa, H. salicornicum and H. recurvum (Chapter 2) was investigated against adult worms of H. contortus, T. ovis and P. cervi (Chapter 3) via adult motility assay (Chapter 4). Various concentrations ranging from 7.8 to 500 mg dry matter/ml of three types of extracts of each plant, i.e. aqueous, methanol, and aqueous-methanol (30:70), were used at different time intervals to access their anthelmintic activity. Levamisol (0.55 mg/ml) and oxyclozanide (30 mg/ml) served as positive and phosphate-buffered saline as negative control. All extracts exhibited minimum and maximum activity at 2 h and 12 h after parasite exposure; the 500 mg/ml extract concentrations were most effective. Plant species (P<0.05), extract type (P<0.01), parasite species (P<0.01), extract concentration (P<0.01), time of exposure (P<0.01) and their interactions (P<0.01) had significant effects on the number of immobile/dead helminths. From the comparison of LC50 values it appeared that the aqueous extract of C. decidua was more potent against H. contortus and T. ovis, while the aqueous extract of S. foetida was effective against P. cervi. The methanol extracts of H. recurvum were most potent against all three types of parasites, and its aqueous-methanol extract was also very effective against T. ovis and P. cervi. Based on these result it is concluded that the aqueous extract of C. decidua, as well as the methanol and aqueous-methanol extract of H. recurvum have the potential to be developed into plant-based drugs for treatment against H. contortus, T. ovis and P. cervi infestations. Further studies are now needed to investigate the in vivo anthelmintic activity of these plants and plant extracts, respectively, in order to develop effective, cheap and locally available anthelmintics for pastoralists in Cholistan and neighboring desert regions. This will allow developing tangible recommendations for plant-based anthelminthic treatment of sheep and goat herds, and by this enable pastoralists to maintain healthy and productive flocks at low costs and probably even manufacture herbal drugs for marketing on a regional scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vegetables represent a main source of micro-nutrients which can improve the health status of malnourished poor in the world. Spinach (Spinacia oleracea L.) is a popular leafy vegetable in many countries which is rich with several important micro-nutrients. Thus, consuming Spinach helps to overcome micro-nutrient deficiencies. Pests and pathogens act as major yield constraints in food production. Root-knot nematodes, Meloidogyne species, constitute a large group of highly destructive plant pests. Spinach is found to be highly susceptible for these nematode attacks. Though agricultural production has largely benefited from modern technologies and innovations, some important dimensions which can minimize the yield losses have been neglected by most of the growers. Pre-plant or initial nematode density in soil is a crucial biotic factor which is directly responsible for crop losses. Hence, information on preplant nematode densities and the corresponding damage is of vital importance to develop successful control procedures to enhance crop production. In the present study, effect of seven initial densities of M. incognita, i.e., 156, 312, 625, 1250, 2,500, 5,000 and 10,000 infective juveniles (IJs)/plant (equivalent to 1000cm3 soil) on the growth and root infestation on potted spinach plants was determined in a screen house. In order to ensure a high accuracy, root infestation was ascertained by the number of galls formed, the percentage galled-length of feeder roots and galled-feeder roots, and egg production, per plant. Fifty days post-inoculation, shoot length and weight, and root length were suppressed at the lowest IJs density. However, the pathogenic effect was pronounced at the highest density at which 43%, 46% and 45% reduction in shoot length and weight, and root length, respectively, was recorded. The highest reduction in root weight (26%) was detected at the second highest density. The Number of galls and percentage galled-length of feeder roots/per plant showed significant progressive increase across the increasing IJs density with the highest mean value of 432.3 and 54%, respectively. The two shoot growth parameters and root length showed significant inverse relationship with the increasing gall formation. Moreover, the shoot and root length were shown to be mutually dependent on each other. Suppression of shoot growth of spinach greatly affects the grower’s economy. Hence, control measures are essentially needed to ensure a better production of spinach via reducing the pre-plant density below the level of 0.156 IJs/cm3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

S'avaluaren 58 soques de Pseudomonas fluorescens i Pantoea agglomerans per la seva eficàcia en el biocontrol de la malaltia causada per l'oomicet Phytophthora cactorum en maduixera i pel nematode formador de gal·les Meloidogyne javanica en el portaempelt GF-677. Es desenvolupà un mètode ex vivo d'inoculació de fulla amb l'objectiu de seleccionar soques bacterianes com a agents de control biològic de P. cactorum en maduixera. Tres soques de P. fluorescens es seleccionaren com a soques eficaces en el biocontrol del patogen en fulles i en la reducció de la malaltia en plantes de maduixera. La combinació de soques semblà millorar la consistència del biocontrol en comparació amb les soques aplicades individualment. Tres soques de P. fluorescens es seleccionaren per la seva eficàcia en la reducció de la infecció de M. javanica en portaempelts GF-677. La combinació d'aquestes soques no incrementà l'eficàcia del biocontrol, però semblà reduir la seva variabilitat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motility and efficacy of Pseudomonas oryzihabitans as a biocontrol agent against the potato cyst nematode Globodera rostochiensis were studied with respect to temperature. The influence of soil moisture on bacterial movement was also tested. In a closed container trial, P. oryzihabitans significantly reduced invasion of second stage juveniles (J2) of G. rostochiensis in potato roots, its effect being more marked at 25 and 21 degreesC than at 17 degreesC. P. oryzihabitans motility in vitro was optimal at 26 degreesC and inhibited at temperatures below 18 degreesC. In soil, both temperature and matric potential affected bacterial movement. At 16 degreesC its movement and survival were suppressed, but they were unaffected at 25 degreesC. At both temperatures the biocontrol agent moved faster in the wetter (- 0.03 MPa) than in the drier soil (- 0.1 MPa). These results suggest that temperature is a key factor in determining the potential of P. or.yzihabitans as a biocontrol agent. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The whipworm, Trichuris trichiura L., is one of the most common human intestinal parasites worldwide, yet little is known of its origin and global spread. Archaeological records for this nematode have all been of Neolithic or later date, suggesting a possible association between the spread of pastoral farming and human acquisition of whipworm. This paper reports the discovery of eggs of the genus Trichuris in late Mesolithic deposits from south Wales, indicating that whipworm was present in Europe before the arrival of agriculture. This raises the possibility that human infection by Trichuris arose through contact with wild animals in parts of the landscape frequented by both human and animal groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the standard models of concentration addition and independent action predict overall toxicity of multicomponent mixtures reasonably, interactions may limit the predictive capability when a few compounds dominate a mixture. This study was conducted to test if statistically significant systematic deviations from concentration addition (i.e. synergism/antagonism, dose ratio- or dose level-dependency) occur when two taxonomically unrelated species, the earthworm Eisenia fetida and the nematode Caenorhabditis elegans were exposed to a full range of mixtures of the similar acting neonicotinoid pesticides imidacloprid and thiacloprid. The effect of the mixtures on C. elegans was described significantly better (p<0.01) by a dose level-dependent deviation from the concentration addition model than by the reference model alone, while the reference model description of the effects on E. fetida could not be significantly improved. These results highlight that deviations from concentration addition are possible even with similar acting compounds, but that the nature of such deviations are species dependent. For improving ecological risk assessment of simple mixtures, this implies that the concentration addition model may need to be used in a probabilistic context, rather than in its traditional deterministic manner. Crown Copyright (C) 2008 Published by Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nematode Caenorhabditis elegans expresses two metallothioneins (MTs), CeMT-1 and CeMT-2, that are believed to be key players in the protection against metal toxicity. In this study, both isoforms were expressed in vitro in the presence of either Zn(II) or Cd(II). Metal binding stoichiometries and affinities were determined by ESI-MS and NMR, respectively. Both isoforms had equal zinc binding ability, but differed in their cadmium binding behaviour, with higher affinity found for CeMT-2. In addition, wild-type C. elegans, single MT knockouts and a double MT knockout allele were exposed to zinc (340 μm) or cadmium (25 μm) to investigate effects in vivo. Zinc levels were significantly increased in all knockout strains, but were most pronounced in the CeMT-1 knockout, mtl-1 (tm1770), while cadmium accumulation was highest in the CeMT-2 knockout, mtl-2 (gk125) and the double knockout mtl-1;mtl-2 (zs1). In addition, metal speciation was assessed by X-ray absorption fine-structure spectroscopy. This showed that O-donating, probably phosphate-rich, ligands play a dominant role in maintaining the physiological concentration of zinc, independently of metallothionein status. In contrast, cadmium was shown to coordinate with thiol groups, and the cadmium speciation of the wild-type and the CeMT-2 knockout strain was distinctly different to the CeMT-1 and double knockouts. Taken together, and supported by a simple model calculation, these findings show for the first time that the two MT isoforms have differential affinities towards Cd(II) and Zn(II) at a cellular level, and this is reflected at the protein level. This suggests that the two MT isoforms have distinct in vivo roles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motility and efficacy of Pseudomonas oryzihabitans as a biocontrol agent against the potato cyst nematode Globodera rostochiensis were studied with respect to temperature. The influence of soil moisture on bacterial movement was also tested. In a closed container trial, P. oryzihabitans significantly reduced invasion of second stage juveniles (J2) of G. rostochiensis in potato roots, its effect being more marked at 25 and 21 degreesC than at 17 degreesC. P. oryzihabitans motility in vitro was optimal at 26 degreesC and inhibited at temperatures below 18 degreesC. In soil, both temperature and matric potential affected bacterial movement. At 16 degreesC its movement and survival were suppressed, but they were unaffected at 25 degreesC. At both temperatures the biocontrol agent moved faster in the wetter (- 0.03 MPa) than in the drier soil (- 0.1 MPa). These results suggest that temperature is a key factor in determining the potential of P. or.yzihabitans as a biocontrol agent. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A species of the hyper-parasitic bacterium Pasteuria was isolated from the root-knot nematode Meloidogyne ardenensis infecting the roots of ash (Fraxinus excelsior). It is morphologically different from some other Pasteuria pathogens of nematodes in that the spores lack a basal ring on the ventral side of the spore and have a unique clumping nature. Transmission electron microscopy (TEM) showed that the clumps of spores are not random aggregates but result from the disintegration of the suicide cells of the thalli. Sporulation within each vegetative mycelium was shown to be asynchronous. In addition to the novel morphological features 16S rRNA sequence analysis showed this to be a new species of Pasteuria which we have called P. hartismeri. Spores of P. hartismeri attach to juveniles of root-knot nematodes infecting a wide range of plants such as mint (Meloidogyne hapla), rye grass (unidentified Meloidogyne sp.) and potato (Meloidogyne fallax). (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of a formulated bio-nematicide product containing lyophilized bacteria spores of Bacillus firmus was evaluated against root-knot nematodes (RKN) in greenhouse and field experiments. A decrease of second stage juveniles hatching from eggs was recorded by using the bio-nematicide at a dose of 0.9 g kg(-1) of soil while further a decrease was recorded by doubling the dose. However, the mortality rate decreased as the inoculurn level increased. Exposure of either second stage juveniles or egg masses to temperatures of 35-40 degrees C for 1-4 weeks had a marked effect on their survival. In a field experiment, the bio-nematicide was evaluated for its potential to control RKN either as a stand-alone method or in combination with soil solarization. The latter was tested for 15-30 days and the bionematicide was applied just before soil coverage with the plastic sheet or just after its removal. Soil solarization either for 15-30 days provided satisfactory control of RKN. The combination of soil solarization with the bio-nematicide improved nematode control and gave results similar to the chemical treatment. (c) 2007 Elsevier Ltd. All rights reserved.