928 resultados para recombinant protein expression in E. coli
Resumo:
Phosphodiesterase (PDE) inhibition reduces skeletal muscle atrophy, but the underlying molecular mechanism remains unclear. We used microdialysis to investigate the effects of different PDE inhibitors on interstitial tyrosine concentration as well as proteolytic activity and atrogenes expression in isolated rat muscle. Rolipram, a PDE-4-selective inhibitor, reduced the interstitial tyrosine concentration and rates of muscle protein degradation. The rolipram-induced muscle cAMP increase was accompanied by a decrease in ubiquitin proteasome system (UPS) activity and atrogin-1 mRNA, a ubiquitin-ligase involved in muscle atrophy. This effect was not associated with Akt phosphorylation but was partially blocked by a protein kinase A inhibitor. Fasting increased atrogin-1, MuRF-1 and LC3b expression, and these effects were markedly suppressed by rolipram. Our data suggest that activation of cAMP signaling by PDE-4 blockade leads to inhibition of UPS activity and atrogenes expression independently of Akt. These findings are important for identifying novel approaches to attenuate muscle atrophy. Muscle Nerve 44: 371-381, 2011
Resumo:
Pires-Oliveira M, Maragno AL, Parreiras-E-Silva LT, Chiavegatti T, Gomes MD, Godinho RO. Testosterone represses ubiquitin ligases atrogin-1 and Murf-1 expression in an androgen-sensitive rat skeletal muscle in vivo. J Appl Physiol 108: 266-273, 2010. First published November 19, 2009; doi:10.1152/japplphysiol.00490.2009.-Skeletal muscle atrophy induced by denervation and metabolic diseases has been associated with increased ubiquitin ligase expression. In the present study, we evaluate the influence of androgens on muscle ubiquitin ligases atrogin-1/MAFbx/FBXO32 and Murf-1/Trim63 expression and its correlation with maintenance of muscle mass by using the testosterone-dependent fast-twitch levator ani muscle (LA) from normal or castrated adult male Wistar rats. Gene expression was determined by qRT-PCR and/or immunoblotting. Castration induced progressive loss of LA mass (30% of control, 90 days) and an exponential decrease of LA cytoplasm-to-nucleus ratio (nuclear domain; 22% of control after 60 days). Testosterone deprivation induced a 31-fold increase in LA atrogin-1 mRNA and an 18-fold increase in Murf-1 mRNA detected after 2 and 7 days of castration, respectively. Acute (24 h) testosterone administration fully repressed atrogin-1 and Murf-1 mRNA expression to control levels. Atrogin-1 protein was also increased by castration up to 170% after 30 days. Testosterone administration for 7 days restored atrogin-1 protein to control levels. In addition to the well known stimulus of protein synthesis, our results show that testosterone maintains muscle mass by repressing ubiquitin ligases, indicating that inhibition of ubiquitin-proteasome catabolic system is critical for trophic action of androgens in skeletal muscle. Besides, since neither castration nor androgen treatment had any effect on weight or ubiquitin ligases mRNA levels of extensor digitorum longus muscle, a fast-twitch muscle with low androgen sensitivity, our study shows that perineal muscle LA is a suitable in vivo model to evaluate regulation of muscle proteolysis, closely resembling human muscle responsiveness to androgens.
Resumo:
Transposon elements are important tools for gene function analysis, for example they can be used to easily create genome-wide collections of insertion mutants. Transposons may also carry sequences coding for an epitope or fluorescent marker useful for protein expression and localization analysis. We have developed three new Tn5-based transposons that incorporate a GFP (green fluorescent protein) coding sequence to generate fusion proteins in the important fungal pathogen Candida albicans. Each transposon also contains the URA3 and Kan(R) genes for yeast and bacterial selection, respectively. After in vitro transposition, the insertional allele is transferred to the chromosomal locus by homologous recombination. Transposons Tn5-CaGFP and Tn5-CaGFP-URA3:FLIP can generate C-terminal truncated GFP fusions. A URA3 flipper recycling cassette was incorporated into the transposon Th5-CaGFP-UFRA3:FLIP. After the induction of Flip recombinase to excise the marker, the heterozygous strain is transformed again in order to obtain a GFP-tagged homozygous strains. In the Tn5-CaGFP-FL transposon the markers are flanked by a rare-cutting enzyme. After in vitro transposition into a plasmid-borne target gene, the markers are eliminated by restriction digestion and religation, resulting in a construct coding for full-length GFP-fusion proteins. This transposon can generate plasmid libraries of GFP insertions in proteins where N- or C-terminal tagging may alter localization. We tested our transposon system by mutagenizing the essential septin CDC3 gene. The results indicate that the Cdc3 C-terminal extension is important for correct septin filament assembly. The transposons described here provide a new system to obtain global gene expression and protein localization data in C. albicans. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The expression of peripheral tissue antigens (PTAs) in the thymus by medullary thymic epithelial cells (mTECs) is essential for the central self-tolerance in the generation of the T cell repertoire. Due to heterogeneity of autoantigen representation, this phenomenon has been termed promiscuous gene expression (PGE), in which the autoimmune regulator (Aire) gene plays a key role as a transcription factor in part of these genes. Here we used a microarray strategy to access PGE in cultured murine CD80(+) 3.10 mTEC line. Hierarchical clustering of the data allowed observation that PTA genes were differentially expressed being possible to found their respective induced or repressed mRNAs. To further investigate the control of PGE, we tested the hypothesis that genes involved in this phenomenon might also be modulated by transcriptional network. We then reconstructed such network based on the microarray expression data, featuring the guanylate cyclase 2d (Gucy2d) gene as a main node. In such condition, we established 167 positive and negative interactions with downstream PTA genes. Silencing Aire by RNA interference, Gucy2d while down regulated established a larger number (355) of interactions with PTA genes. T- and G-boxes corresponding to AIRE protein binding sites located upstream to ATG codon of Gucy2d supports this effect. These findings provide evidence that Aire plays a role in association with Gucy2d, which is connected to Several PTA genes and establishes a cascade-like transcriptional control of promiscuous gene expression in mTEC cells. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Oral squamous Cell carcinoma (OSCC) is the most common head and neck cancer. Only in Brazil, the estimate is for 14,160 new cases in 2009. HPV is associated with increasing risk of oral cancer, but its role in carcinogenesis is still controversial. BUBR1, all important protein in the mitotic spindle assembly checkpoint (SAC), has been associated with some virus-encoded proteins and cancer. The aim of the present study was to evaluate the expression of BUBR1 in non-malignant oral lesions and OSCC with and without metastasis associated with HPV infection. We performed immunohistochemistry for BUBR1 in 70 OSCC biopsies divided into three groups (in situ tumors, invasive tumors without metastasis and invasive tumors with metastasis) with their respective lymph nodes from samples with metastasis and in 16 non-malignant oral lesions. PCR was performed in order to detect HPV DNA. Significantly higher BUBR1 expression associated with shorter survival (p=0.0479) was observed in malignant lesions. There was also it significant correlation (r=1.000) with BUBR1 expression in lesions with metastasis and their lymph nodes. Ninety percent of OSCC and 100% of benign lesions were HPV positive. HPV16 and HVP18 were present in 13 and 24% of HPV-positive OSCC samples, respectively. HPV was more prevalent (76%) in samples with a high BUBR1 expression and the absence of viral DNA had no influence oil BUBR1 expression. These findings suggest that HPV could be associated with overexpression of BUBR1 in OSCC. but not in benign oral lesions.
Resumo:
Chemoreflex afferent fibers terminate in the nucleus tractus solitarii (NTS), but the specific location of the NTS neurons excited by peripheral chemoreflex activation remains to be characterized. Here, the topographic distribution of chemoreflex sensitive cells at the commissural NTS was evaluated. To reach this goal, Fos-immunoreactive neurons (Fos-ir) were accounted in rostro-caudal levels of the intermediate and caudal commissural NTS, after intermittent chemoreflex activation with intravenous injection of potassium cyanide [KCN (80 mu g/kg) or saline (0.9%, vehicle), one injection every 3 min during 30 min]. In response to intermittent intravenous injections of KCN, a significant increase in the number of Fos-ir neurons was observed specifically in the lateral intermediate commissural NTS [(LI)NTS (82 +/- 9 vs. 174 +/- 16, cell number mean per section)] and lateral caudal commissural NTS [(LI)NTS (71 +/- 9 vs. 199 +/- 18, cell number mean per section)]. To evaluate the influence of baroreceptor-mediated inputs following the increase in blood pressure during intermittent chemoreflex activation, we performed an intermittent activation of the arterial baroreflex by intravenous injection of phenylephrine [1.5 mu g/kg iv (one injection every 3 min during 30 min)]. This procedure induced no change in Fos-ir in (LI)NTS (64 +/- 6 vs. 62 +/- 12, cell number mean per section) or (LC)NTS (56 +/- 15 vs. 77 +/- 12, cell number mean per section). These data support the involvement of the commissural NTS in the processing of peripheral chemoreflex, and provide a detailed characterization of the topographical distribution of activated neurons within this brain region. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Despite the well-established sympathoexcitation evoked by chemoreflex activation, the specific sub-regions of the CNS underlying such sympathetic responses remain to be fully characterized. In the present study we examined the effects of intermittent chemoreflex activation in awake rats on Fos-immunoreactivity (Fos-ir) in various subnuclei of the paraventricular nucleus of the hypothalamus (PVN), as well as in identified neurosecretory preautonomic PVN neurons. In response to intermittent chemoreflex activation, a significant increase in the number of Fos-ir cells was found in autonomic-related PVN subnuclei, including the posterior parvocellular, ventromedial parvocellular and dorsal-cap, but not in the neurosecretory magnocellular-containing lateral magnocellular subnucleus. No changes in Fos-ir following chemoreflex activation were observed in the anterior PVN subnucleus. Experiments combining Fos immunohistochemistry and neuronal tract tracing techniques showed a significant increase in Fos-ir in rostral ventrolateral medulla (RVLM)-projecting (PVN-RVLM), but not in nucleus of solitarii tract (NTS)-projecting PVN neurons. In summary, our results support the involvement of the PVN in the central neuronal circuitry activated in response to chemoreflex activation, and indicate that PVN-RVLM neurons constitute a neuronal substrate contributing to the sympathoexcitatory component of the chemoreflex. Published by Elsevier Ltd on behalf of IBRO.
Resumo:
Objective: To analyze the expression of the glycodelin gene to better understand the molecular environment of endometriotic lesions and to elucidate the potential mechanisms that underlie the complex physiopathology of endometriosis. Design: Prospective laboratory study. Setting: University hospital. Patient(s): Eleven healthy fertile women and 17 patients with endometriosis in the early proliferative phase of the menstrual cycle. Intervention(s): Endometrial biopsy specimens were obtained from the endometrium of healthy women without endometriosis (controls) and from eutopic and ectopic endometrium tissues (pelvic and ovarian endometriotic implants) of endometriosis patients. Main Outcome Measure(s): The glycodelin relative expression level by real-time polymerase chain reaction (PCR) analysis. Result(s): The glycodelin down-regulation found in the endometriotic lesions was 332.26 and 123.17-fold lower, respectively, when compared with the eutopic tissue and the control endometrium. Conclusion(s): Glycodelin may be one of the molecules that contributes to the loss of cellular homeostasis in endometriotic lesions. (Fertil Steril (R) 2009;91:1676-80. (C)2009 by American Society for Reproductive Medicine.)
beta 1 Integrin and VEGF expression in an experimental model of brain tissue heterotopia in the lung
Resumo:
Integrins and vascular endothelial growth factor (VEGF) are crucially involved in interaction, proliferation, migration, and survival of the cells. However, there is no report in the literature about beta 1 integrin and VEGF expression in heterotopic brain tissue. The aim of this study was to assess beta 1 integrin and VEGF expression in experimental brain tissue heterotopia in the lung during both fetal and neonatal periods. Twenty-four pregnant female Swiss mice were used to induce brain tissue heterotopia on the 15th gestational day. Briefly, the brain of one fetus of each dam was extracted, disaggregated, and injected into the right hemithorax of siblings. Six of these fetuses with pulmonary brain tissue implantation were collected on the 18th gestational day (group E18) and six other on the eighth postnatal day (group P8). Immunohistochemistry of the fetal trunks showed implantation of glial fibrillary acidic protein- and neuronal nuclei-positive heterotopic brain tissue, which were also positive for beta 1 integrin and VEGF in both groups E18 and P8. These results indicate that brain tissue heterotopia during fetal and postnatal period is able to complete integration with the lung tissue as well as to induce vascular proliferation which are the necessary steps for a successful implantation.
Resumo:
Resistance to drug is a major cause of treatment failure in pediatric brain cancer. The multidrug resistance (MDR) phenotype can be mediated by the superfamily of adenosine triphosphate-binding cassette (ABC) transporters. The dynamics of expression of the MDR genes after exposure to chemotherapy, especially the comparison between pediatric brain tumors of different histology, is poorly described. To compare the expression profiles of the multidrug resistance genes ABCB1, ABCC1, and ABCG2 in different neuroepithelial pediatric brain tumor cell lines prior and following short-term culture with vinblastine. Immortalized lineages from pilocytic astrocytoma (R286), anaplasic astrocytoma (UW467), glioblastoma (SF188), and medulloblastoma (UW3) were exposed to vinblastine sulphate at different schedules (10 and 60 nM for 24 and 72 h). Relative amounts of mRNA expression were analyzed by real-time quantitative polymerase chain reaction. Protein expression was assessed by immunohistochemistry for ABCB1, ABCC1, and ABCG2. mRNA expression of ABCB1 increased together with augmenting concentration and time of exposure to vinblastine for R286, UW467, and UW3 cell lines. Interestingly, ABCB1 levels of expression diminished in SF188. Following chemotherapy, mRNA expression of ABCC1 decreased in all cell lines other than glioblastoma. ABCG2 expression was influenced by vinblastine only for UW3. The mRNA levels showed consistent association to protein expression in the selected sets of cell lines analyzed. The pediatric glioblastoma cell line SF188 shows different pattern of expression of multidrug resistance genes when exposed to vinblastine. These preliminary findings may be useful in determining novel strategies of treatment for neuroepithelial pediatric brain tumors.
Resumo:
Purpose: To evaluate the impact of adjuvant chemotherapy on the outcome of osteosarcoma of the extremities, and to identify prognostic factors using the expression of adenomatous polyposis coli (APC), cadherin and beta-catenin Wnt-signalling markers. Methods: The clinical, demographic, anatomic and pathological factors including a detailed analysis of the immunohistochemical expression of cadherin, B-catenin and APC were retrospectively examined in 97 patients with osteosarcoma of the extremities (metastatic and non-metastatic at diagnosis), treated with surgery and/or chemotherapy from 1985 to 2000. Results: APC immunoreactivity showed a statistically significant association with age and serum alkaline phosphatase levels (p = 0.025 and p = 0.038). When survival was the end-point of multivariate analysis, race segregated patients with poor survival as did lack of cadherin expression. For overall survival, cadherin immunoreactivity and the interaction between APC expression and response to adjuvant chemotherapy were significant (p = 0.012 and p < 0.001). No significant clinical association was evident with immunohistochemical expression of cadherin, beta-catenin. Conclusion: Lack of expression of cadherin was a significant variable to overall and disease-free survival. Significantly, positive APC immunoreactivity and adjuvant chemotherapy were associated with a favourable treatment response. Studies using newer immunohistochemical markers within the Wnt-signalling pathway may guide the development of more appropriate therapeutic targets for future individualised treatment. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Objective. The aim of this study was to assess the effect of cigarette smoke inhalation (CSI) on gene expression in alveolar bone healing sites. Study design. Wistar rats were randomly assigned to the groups: control [animals not exposed to CSI (n = 20)] and test [animals exposed to CSI, starting 3 days before teeth extraction and maintained until killing them (n = 20)]. First mandibular molars were bilaterally extracted, and the expression of alkaline phosphatase, bone morphogenetic protein (BMP) 2 and 7, receptor activator of nuclear factor kappa B ligand, osteoprotegerin, and d2 isoform of vacuolar adenosine triphosphatase V(o) domain were assessed by quantitative polymerase chain reaction in the newly formed tissue in the sockets. Results. Overall, data analysis demonstrated that CSI significantly affected the expression pattern of all of the studied genes except BMP-7. Conclusion. The expression of key genes for bone healing may be affected by CSI in tooth extraction sites. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:447-452)
Resumo:
Squamous cell carcinoma of the oral cavity (OSCC) is a malignancy characterized by a high degree of local aggression and metastasis to cervical lymph nodes. Tetraspanins are proteins with functional roles in a wide array of cellular processes and are reported to be associated with tumor progression. The present study investigated the expression of the CD9, CD37, CD63, CD81 and CD82 tetraspanins in OSCC using immunohistochemistry (IHC) and quantitative Real Time-PCR (qRT-PCR). Tissue microarray (TMA) analysis of samples from 179 cases of OSCC and 10 normal samples oral mucosa were evaluated immunomorphologically. We analyzed CD9 and CD82 expression by qRT-PCR in 66 OSCC cases and 4 normal samples of oral mucosa. Expression of CD63, CD37 and CD81 was not detected in the samples studied. CD82 was downregulated or negative in 127 of 179 (80%) specimens; no correlation was observed between CD82 expression, clinicopathological parameters, disease-free survival and 5-year overall survival. CD9 expression was downregulated or negative in 75 of 129 (42%) OSCC samples. Loss of CD9 expression in OSCC samples correlated with the incidence of lymph node metastasis (p = 0.017). Disease-free survival and the 5-year overall survival of patients with downregulated or negative CD9 expression were significantly lower than in patients with positive CD9 expression (p = 0.010 and p = 0.071, respectively). No correlation was found between CD9 or CD82 expression and clinicopathological parameters by qRT-PCR. Our results suggest that the downregulation or lack of expression of the CD9 protein might indicate a more aggressive of OSCC. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background Prolonged exposure of the lip to sunlight may cause actinic cheilitis (AC) and squamous cell carcinoma (SCC). Maspin is a serpin with tumor suppressor functions. This work analyzed the presence and distribution of maspin in AC and lip SCC. Methods Sections from 36 cases diagnosed as AC (18 cases with mild epithelial dysplasia, 11 with moderate and 7 with severe), 18 cases diagnosed as lip SCC and 7 specimens containing normal lip vermillion epithelium were submitted for immunohistochemical analysis to detect maspin. Results All AC cases with mild and two cases with moderate dysplasia were scored 3. The remaining nine cases with moderate dysplasia were identified as score 2, whereas all cases with severe dysplasia were scored 1. Positive staining for maspin decreased from the basal layer to the surface. Among the 18 lip SCCs studied, 15 cases showed abundant staining for maspin. Epithelium adjacent to the SCCs also showed intense positive staining in all cells. Conclusions Our results suggest that the loss of maspin expression occurs from the basal layer to the surface. Lip SCCs related to solar radiation show an intense presence of maspin protein in almost all tumor cells as well as the neighboring epithelium. Fontes A, Sousa SM, Santos E, Martins MT. The severity of epithelial dysplasia is associated with loss of maspin expression in actinic cheilitis.
Resumo:
Background: Vascular endothelial growth factor (VEGF) is a macromolecule of importance in inflammation that has been implicated in periodontitis. The aims of this study were to investigate VEGF expression during the progression of periodontal disease and to evaluate the effect of a preferential cyclooxygenase (COX)-2 inhibitor meloxicam on VEGF expression and alveolar bone loss in experimentally induced periodontitis. Methods: A total of 120 Wistar rats were randomly separated into groups 1 (control) and 2 (meloxicam, 3 mg/kg/day, intraperitoneally, for 3, 7, 14, or 30 days). Silk ligatures were placed at the gingival margin level of the lower right first molar of all rats. VEGF expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR), Western blot (WB), and immunohistochemical (IHC) analyses. The hemiarcades were processed for histopathologic analysis. RT-PCR and WB results were submitted to analysis of variance, the Tukey test, and Pearson correlation analysis (P<0.05). Results: A reduction in alveolar bone resorption was observed in the meloxicam-treated group compared to the control group at all periods studied. There was a positive correlation between COX-2 mRNA and VEGF mRNA in the gingival tissues and periodontal disease (R = 0.80; P = 0.026). Meloxicam significantly reduced the increased mRNA VEGF expression in diseased tissues after 14 days of treatment (P = 0.023). Some alterations in VEGF receptor I mRNA expression were observed, but these were not statistically significant. VEGF protein expression in WB experiments was significantly higher in diseased sites compared to healthy sites (P<0.05). After 14 days of treatment with meloxicam, an important decrease in VEGF protein expression was detected in diseased tissues (P = 0.08). Qualitative IHC analysis revealed that VEGF protein expression was higher in diseased tissues and decreased in tissues from rats treated with meloxicam. Conclusions: The present data suggest an important role for VEGF in the progression of periodontal disease. Systemic therapy with meloxicam can modify the progression of experimentally induced periodontitis in rats by reducing VEGF expression and alveolar bone loss.