957 resultados para reaction mechanism(Chemistry)
Resumo:
Studies for the development of the in-situ microscopic FTIR spectroelectrochemistry (MFTIRS) have been carried out in polyethylene glycol(PEG) polyelectrolyte, Redox reaction mechanisms of various electroactive substances involving inorganic salt, organic compound and inorganic polymeric particles have been studied.
Resumo:
Plussian blue(PB)/Pt modified electrode Tvas studied in the CdCl2 electrolyte solution by cyclic voltammetry and in situ FTIR spectroelectrochemistry. It was found that Cadmium ion was capable of substituting the high-spin iron of PB in an electrochemically induced substitution reaction and hexacyanoferrate cadmium (CdHCF) can be formed in the PB film. But PB and CdHCF in mixture film showed their own electrochemistry properties without serious effect on each other. The mechanism of substitution reaction has been given in detail.
Resumo:
The fragmentations of the product ions produced by the ion-molecule reaction of the halogeno-benzene (chlorobenzene, bromobenzene and iodobenzene) were studied using the collision-induced dissociation, The main product ions of the ion-molecule reaction of three kinds of halogeno-beneze include the dimeric ions, m/z(2M-X) ions and m/z(2M-2X) ions, The CID spectra of these ions were compared with that of the protonated bromodiphenyl and biphenyl, The formation mechanism and the structure of the product ions were obtained.
Resumo:
Two mixed oxide systems La2-xSrxCuO4+/-lambda(0.0 less than or equal to x less than or equal to 1.0) and La2+xThxCuO4+/-lambda(0.0 less than or equal to x less than or equal to 0.4) with K2NiF4 structure were prepared by varying re values; Their crystal structures were studied by means of XRD and IR spectra. The average valence of Cu ion at B site, nonstoichiometric oxygen (A) and the chemical composition in the bulk and on the surface of the catalysts were measured by means of chemical analysis and XPS. The catalytic behavior in reaction CO + NO was investigated under the regular change of average valence of Cu ion at B site and nonstoichiometric oxygen (lambda). Meanwhile, the adsorption and activation of the small molecules NO and the mixture of NO + CO over the mixed oxide catalysts were studied by means of MS-TPD. The catalytic mechanism of reaction NO + CO over these oxide catalysts were proposed; and it has been found that, at lower temperatures the activation of NO is the rate determining step and the catalytic activity is related to the lower valent metallic ion and its concentration, while at higher temperatures the adsorption of NO is the rate determining step and the catalytic activity is related to the oxygen vacancy and its concentration.
Resumo:
beta, beta-1, 3-Piopylenedithio-alpha, beta-unsaturated arylketones 2 via chemoselective 1,2-addition with allyl or benzyl Grignard reagents afforded the corresponding carbinols 3 and 4. Catalysed by silica gel, the carbinols 3 and 4 were converted to the beta,gamma-unsaturated arylketones 5, 6. The mechanism and reaction condition were discussed.
Resumo:
The reaction of nitrone, N-methyl nitrone, and their hydroxylamine tautomers (vinyl-hydroxylamine and N-methyl vinyl-hydroxylamine) on the reconstructed Si(100)-2 x 1 surface has been investigated by means of hybrid density functional theory (B3LYP) and Moller-Plesset second-order perturbation (MP2) methods. The calculations predicted that both of the nitrones should react with the surface dimer via facile concerted 1,3-dipolar cycloaddition leading to 5-member-ring compounds. The reaction of hydroxylamine tautomers on the Si(100) surface follows pi-complex (intermediate) mechanism. For the reaction of N-methyl vinyl-hydroxylamine, the pi-complex intermediate undergoes [2+2] cycloaddition leading to a 4-member-ring compound. But in the reaction of vinyl-hydroxylamine, the intermediate undergoes H-migration reaction ("ene" reaction) resulting in the oxime-terminated Si surface. All the surface reactions result in the hydroxyl-terminated silicon surfaces, which are very useful for the further modification of the semiconductor.
Resumo:
The mechanism of the dehydrogenation of tetrahydrocarbazole to carbazole over palladium has been examined for the first time. By use of a combination of deuterium exchange experiments and density functional theory calculations, a detailed reaction profile for the aromatization of tetrahydrocarbazole has been identified and validated by experiment. As with many dehydrogenation reactions, the initial hydrogen abstraction is found to have the highest reaction barrier. Tetrahydrocarbazole has four hydrogens which can, in principle, be cleaved initially; however, the theory and experiment show that the reaction is dominated by the cleavage of the carbon hydrogens at the carbon atoms in positions 1 and 4. The two pathways originating from these two C-H bond cleavage processes are found to have similar reaction energy profiles and both contribute to the overall reaction.
Resumo:
We systematically investigated the mechanism of the C-1 + C-1 coupling reactions using density functional theory. The activation energies of C-1 + C-1 coupling and carbon hydrogenation reactions on both flat and stepped surfaces were calculated and analyzed. Moreover, the coverages of adsorbed C-1 species were estimated, and the reaction rates of all possible C-1 + C-1 coupling pathways were quantitatively evaluated. The results suggest that the reactions of CH2 + CH2 and CH3 + C at steps are most likely to be the key C-1 + C-1 coupling steps in FT synthesis on Co catalysts. The reactions of C-2 + C-1 and C-3 + C-1 coupling also were studied; the results demonstrate that in addition to the pathways of RCH + CH2 and RCH2 + C, the coupling of RC + C and RC + CH also may contribute to the chain growth after C-1. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
A quantitative approach is used to understand the chain growth mechanism in FT synthesis on the Ru, Fe, Rh, and Re surfaces. The C-C coupling reactions are extensively calculated on the stepped metal surfaces. Combining the coupling barriers and reactant stabilities, we investigate the reaction rates of all possible C, + C-1 coupling pathways on the metal surfaces. It is found that (i) all the transition-state structures are similar on these surfaces, while some coupling barriers are very different; (ii) the dominant chain growth pathways on these surfaces are different: C + CH and CH + CH on Rh and Ru surfaces, C + CH3 on Fe surface, and C + CH on Re surface. The common features of the major coupling reactions together with those on the Co surface are also discussed.
Resumo:
The reduction of oxygen in the presence of carbon dioxide has been investigated by cyclic voltammetry at a gold microdisk electrode in the two room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ([EMIM][N(Tf)(2)]) and hexyltriethylammonium bis(trifluoromethylsulfonyl)imide ([N-6222] [N(Tf)(2)]). With increasing levels of CO2, cyclic voltammetry shows an increase in the reductive wave and diminishing of the oxidative wave, indicating that the generated superoxide readily reacts with carbon dioxide. The kinetics of this reaction are investigated in both ionic liquids. The reaction was found to proceed via a DISP1 type mechanism in [EMIM][N(Tf)(2)] with an overall second-order rate constant of 1.4 +/- 0.4 x 10(3) M-1 s(-1). An ECE or DISP1 mechanism was determined to be the most likely pathway for the reaction in [N-6222][N(Tf)(2)], with an overall second-order rate constant of 1.72 +/- 0.45 x 10(3) m(-1) s(-1).
Resumo:
The mechanism for the formation of NH3 during the NO-H-2 reaction over Pt/ZrO2 was studied. Steady-state isotopic transient kinetic analysis was carried out with isotopic switching from (NO)-N-15-D-2 to (NO)-N-14-D-2, and the results revealed that formation of N-2 and N2O was associated with linearly adsorbed NO on the Pt surface, whereas ammonia formation was associated with NDx species adsorbed on ZrO2. The adsorbed NHx species were not observed on the surface of ZrO2 during NH3 adsorption. From transient kinetic experiments, the formation rates of NHx species and of gaseous NH3 agreed with each other, suggesting that the NHx species on ZrO2 was an ammonia intermediate. The NDx species did not react with D-2 directly, but H-D exchange occurred easily. The addition of H2O to the NO-H-2 feed gas enhanced the formation of NH3. In situ diffuse reflectance spectra and transient kinetic analysis revealed that H2O enhanced the conversion of NHx species to NH3.
Resumo:
The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.
Resumo:
A mechanistic study of the H-2-assisted Selective Catalytic Reduction (SCR) of NOx with octane as reductant over a Ag/Al2O3 catalyst was carried out using a modified DRIFTS cell coupled to a mass spectrometer Using fast transient cycling switching of H-2 with a time resolution of a few seconds It was possible to differentiate potential reaction intermediates from other moieties that are clearly spectator species Using such a periodic operation mode effects were uncovered that are normally hidden in conventional transient studies which typically consist of a single transient In experiments based on a single transient addition of H-2 to or removal of H-2 from the SCR feed it was found that the changes in the concentrations of gaseous species (products and reactants) were not matched by changes at comparable timescales of the concentration of surface species observed by IR This observation indicates that the majority of sur face species observed by DRIFTS under steady-state reaction conditions are spectators In contrast under fast cycling experimental conditions It was found that a surface isocyanate species had a temporal response that matched that of N-15(2) This suggests that some of the isocyanate species observed by infrared spectroscopy could be important intermediates in the hydrogen-assisted SCR reaction although it is emphasised that this may be dependent on the way in which the infrared spectra are obtained It is concluded that the use of fast transient cycling switching techniques may provide useful mechanistic information under certain circumstances.