944 resultados para quantitative trait loci (QTL)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major locus conferring resistance to the causal organism of powdery mildew, Erysiphe polygoni DC,, in mungbean (Vigna radiata L. Wilczek) was identified using QTL analysis with a population of 147 recombinant inbred individuals. The population was derived from a cross between 'Berken', a highly susceptible variety, and ATF 3640, a highly resistant line. To test for response to powdery mildew, F-7 and F-8 lines were inoculated by dispersing decaying mungbean leaves with residual conidia of E. polygoni amongst the young plants to create an artificial epidemic and assayed in a glasshouse facility. To generate a linkage map, 322 RFLP clones were tested against the two parents and 51 of these were selected to screen the mapping population. The 51 probes generated 52 mapped loci, which were used to construct a linkage map spanning 350 cM of the mungbean genome over 10 linkage groups. Using these markers, a single locus was identified that explained up to a maximum of 86% of the total variation in the resistance response to the pathogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is now considerable evidence that host genetic factors are important in determining the outcome of infection with Mycobacterium tuberculosis (MTB). The aim of this study was to assess the role of several candidate genes in the variation observed in the immune responses to MTB antigens. In-vitro assays of T-cell proliferation, an in-vivo intradermal delayed hypersensitivity response; cytokine and antibody secretions to several mycobacterial peptide antigens were assessed in healthy, but exposed, West African twins. Candidate gene polymorphisms were typed in the NRAMP1, Vitamin D receptor, IL10, IL4, IL4 receptor and CTLA-4 genes. Variants of the loci IL10 (-1082 G/A), CTLA-4 (49 A/G) and the IL4 receptor (128 A/G) showed significant associations with immune responses to several antigens. T-cell proliferative responses and antibody responses were reduced, TNF-alpha responses were increased for subjects with the CTLA-4 G allele. The T-cell proliferative responses of subjects with IL10 GA and GG genotypes differed significantly. IL4 receptor AG and GG genotypes also showed significant differences in their T-cell proliferative responses to MTB antigens. These results yield a greater understanding of the genetic mechanisms that underlie the immune responses in tuberculosis and have implications for the design of therapeutic interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single male sexually selected traits have been found to exhibit substantial genetic variance, even though natural and sexual selection are predicted to deplete genetic variance in these traits. We tested whether genetic variance in multiple male display traits of Drosophila serrata was maintained under field conditions. A breeding design involving 300 field-reared males and their laboratory-reared offspring allowed the estimation of the genetic variance-covariance matrix for six male cuticular hydrocarbons (CHCs) under field conditions. Despite individual CHCs displaying substantial genetic variance under field conditions, the vast majority of genetic variance in CHCs was not closely associated with the direction of sexual selection measured on field phenotypes. Relative concentrations of three CHCs correlated positively with body size in the field, but not under laboratory conditions, suggesting condition-dependent expression of CHCs under field conditions. Therefore condition dependence may not maintain genetic variance in preferred combinations of male CHCs under field conditions, suggesting that the large mutational target supplied by the evolution of condition dependence may not provide a solution to the lek paradox in this species. Sustained sexual selection may be adequate to deplete genetic variance in the direction of selection, perhaps as a consequence of the low rate of favorable mutations expected in multiple trait systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class (Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue (Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New tools derived from advances in molecular biology have not been widely adopted in plant breeding for complex traits because of the inability to connect information at gene level to the phenotype in a manner that is useful for selection. In this study, we explored whether physiological dissection and integrative modelling of complex traits could link phenotype complexity to underlying genetic systems in a way that enhanced the power of molecular breeding strategies. A crop and breeding system simulation study on sorghum, which involved variation in 4 key adaptive traits-phenology, osmotic adjustment, transpiration efficiency, stay-green-and a broad range of production environments in north-eastern Australia, was used. The full matrix of simulated phenotypes, which consisted of 547 location-season combinations and 4235 genotypic expression states, was analysed for genetic and environmental effects. The analysis was conducted in stages assuming gradually increased understanding of gene-to-phenotype relationships, which would arise from physiological dissection and modelling. It was found that environmental characterisation and physiological knowledge helped to explain and unravel gene and environment context dependencies in the data. Based on the analyses of gene effects, a range of marker-assisted selection breeding strategies was simulated. It was shown that the inclusion of knowledge resulting from trait physiology and modelling generated an enhanced rate of yield advance over cycles of selection. This occurred because the knowledge associated with component trait physiology and extrapolation to the target population of environments by modelling removed confounding effects associated with environment and gene context dependencies for the markers used. Developing and implementing this gene-to-phenotype capability in crop improvement requires enhanced attention to phenotyping, ecophysiological modelling, and validation studies to test the stability of candidate genetic regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New tools derived from advances in molecular biology have not been widely adopted in plant breeding because of the inability to connect information at gene level to the phenotype in a manner that is useful for selection. We explore whether a crop growth and development modelling framework can link phenotype complexity to underlying genetic systems in a way that strengthens molecular breeding strategies. We use gene-to-phenotype simulation studies on sorghum to consider the value to marker-assisted selection of intrinsically stable QTLs that might be generated by physiological dissection of complex traits. The consequences on grain yield of genetic variation in four key adaptive traits – phenology, osmotic adjustment, transpiration efficiency, and staygreen – were simulated for a diverse set of environments by placing the known extent of genetic variation in the context of the physiological determinants framework of a crop growth and development model. It was assumed that the three to five genes associated with each trait, had two alleles per locus acting in an additive manner. The effects on average simulated yield, generated by differing combinations of positive alleles for the traits incorporated, varied with environment type. The full matrix of simulated phenotypes, which consisted of 547 location-season combinations and 4235 genotypic expression states, was analysed for genetic and environmental effects. The analysis was conducted in stages with gradually increased understanding of gene-to-phenotype relationships, which would arise from physiological dissection and modelling. It was found that environmental characterisation and physiological knowledge helped to explain and unravel gene and environment context dependencies. We simulated a marker-assisted selection (MAS) breeding strategy based on the analyses of gene effects. When marker scores were allocated based on the contribution of gene effects to yield in a single environment, there was a wide divergence in rate of yield gain over all environments with breeding cycle depending on the environment chosen for the QTL analysis. It was suggested that knowledge resulting from trait physiology and modelling would overcome this dependency by identifying stable QTLs. The improved predictive power would increase the utility of the QTLs in MAS. Developing and implementing this gene-to-phenotype capability in crop improvement requires enhanced attention to phenotyping, ecophysiological modelling, and validation studies to test the stability of candidate QTLs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The maintenance of normal body weight is disrupted in patients with anorexia nervosa (AN) for prolonged periods of time. Prior to the onset of AN, premorbid body mass index (BMI) spans the entire range from underweight to obese. After recovery, patients have reduced rates of overweight and obesity. As such, loci involved in body weight regulation may also be relevant for AN and vice versa. Our primary analysis comprised a cross-trait analysis of the 1000 single-nucleotide polymorphisms (SNPs) with the lowest P-values in a genome-wide association meta-analysis (GWAMA) of AN (GCAN) for evidence of association in the largest published GWAMA for BMI (GIANT). Subsequently we performed sex-stratified analyses for these 1000 SNPs. Functional ex vivo studies on four genes ensued. Lastly, a look-up of GWAMA-derived BMI-related loci was performed in the AN GWAMA. We detected significant associations (P-values <5 × 10(-5), Bonferroni-corrected P<0.05) for nine SNP alleles at three independent loci. Interestingly, all AN susceptibility alleles were consistently associated with increased BMI. None of the genes (chr. 10: CTBP2, chr. 19: CCNE1, chr. 2: CARF and NBEAL1; the latter is a region with high linkage disequilibrium) nearest to these SNPs has previously been associated with AN or obesity. Sex-stratified analyses revealed that the strongest BMI signal originated predominantly from females (chr. 10 rs1561589; Poverall: 2.47 × 10(-06)/Pfemales: 3.45 × 10(-07)/Pmales: 0.043). Functional ex vivo studies in mice revealed reduced hypothalamic expression of Ctbp2 and Nbeal1 after fasting. Hypothalamic expression of Ctbp2 was increased in diet-induced obese (DIO) mice as compared with age-matched lean controls. We observed no evidence for associations for the look-up of BMI-related loci in the AN GWAMA. A cross-trait analysis of AN and BMI loci revealed variants at three chromosomal loci with potential joint impact. The chromosome 10 locus is particularly promising given that the association with obesity was primarily driven by females. In addition, the detected altered hypothalamic expression patterns of Ctbp2 and Nbeal1 as a result of fasting and DIO implicate these genes in weight regulation.