548 resultados para priming
Resumo:
To test whether humans can encode words during sleep we played everyday words to men while they were napping and assessed priming from sleep-played words following waking. Words were presented during non-rapid eye movement (NREM) sleep. Priming was assessed using a semantic and a perceptual priming test. These tests measured differences in the processing of words that had been or had not been played during sleep. Synonyms to sleep-played words were the targets in the semantic priming test that tapped the meaning of sleep-played words. All men responded to sleep-played words by producing up-states in their electroencephalogram. Up-states are NREM sleep-specific phases of briefly increased neuronal excitability. The word-evoked up-states might have promoted word processing during sleep. Yet, the mean performance in the priming tests administered following sleep was at chance level, which suggests that participants as a group failed to show priming following sleep. However, performance in the two priming tests was positively correlated to each other and to the magnitude of the word-evoked up-states. Hence, the larger a participant's word-evoked up-states, the larger his perceptual and semantic priming. Those participants who scored high on all variables must have encoded words during sleep. We conclude that some humans are able to encode words during sleep, but more research is needed to pin down the factors that modulate this ability.
Resumo:
Eosinophils natively inhabit the small intestine, but a functional role for them there has remained elusive. Here, we show that eosinophil-deficient mice were protected from induction of Th2-mediated peanut food allergy and anaphylaxis, and Th2 priming was restored by reconstitution with il4(+/+) or il4(-/-) eosinophils. Eosinophils controlled CD103(+) dendritic cell (DC) activation and migration from the intestine to draining lymph nodes, events necessary for Th2 priming. Eosinophil activation in vitro and in vivo led to degranulation of eosinophil peroxidase, a granule protein whose enzymatic activity promoted DC activation in mice and humans in vitro, and intestinal and extraintestinal mouse DC activation and mobilization to lymph nodes in vivo. Further, eosinophil peroxidase enhanced responses to ovalbumin seen after immunization. Thus, eosinophils can be critical contributors to the intestinal immune system, and granule-mediated shaping of DC responses can promote both intestinal and extraintestinal adaptive immunity.
Resumo:
The color red has been considered to indicate threat in achievement contexts. Recent studies have used brief confrontations with red — either as the color or as the word red — to prime for implicit threat, and have found a related impairment of cognitive performance. In another line of research, it has been shown that initial self-regulatory efforts cause diminished investment of self-regulatory resources afterwards, leading to a relative shift from a controlled to an automatic mode of information processing. We assume that activation of implicit threat via the color or the word red impairs cognitive performance more strongly during automatic compared to controlled processing of information. To test this hypothesis, we manipulated undergraduates’ (n = 78) momentary processing mode (automatic vs. controlled) by an initial task that required either high or low self-regulatory effort. Afterwards, participants were briefly confronted with red or gray stimuli and were then asked to complete a standardized intelligence measure. As expected, confrontation with red, as opposed to gray, impaired intellectual performance when participants were in an automatic processing mode. In contrast, no color effect emerged when participants were in a relatively controlled processing mode. In a second study, we replicated this finding in a sample of secondary school students (n = 130), using the black-printed word red or gray to experimentally manipulate implicit threat. Among others, the present findings may help to explain occasional difficulties in replicating findings of priming research.
Resumo:
Plants are important mediators between above- and belowground herbivores. Consequently, interactions between root and shoot defences can have far-reaching impacts on entire food webs. We recently reported that infestation of maize roots by the root feeding larvae of the beetle Diabrotica virgifera virgifera boosts shoot resistance against herbivores and pathogens. Root herbivory also induced DIMBOA levels and primed for enhanced induction of chlorogenic acid, two secondary metabolites that have been associated with biotic stress resistance. Interestingly, ABA emerged as a putative long-distance signal, possibly responsible for this effect. In this addendum, we investigate the role of root-derived ABA in the systemic regulation of aboveground DIMBOA, and the phenolic compounds chlorogenic acid, caffeic and ferulic acid. We discuss the relevance of the plant hormone in relation to defence against the leaf herbivore Spodoptera littoralis. Soil-drench treatment with ABA mimicked root herbivore-induced accumulation of DIMBOA in the leaves. Similarly, ABA mimicked aboveground priming of chlorogenic acid production, resulting in augmented accumulation of this compound upon subsequent shoot attack by S. littoralis. These findings confirm our notion that ABA acts as an important signal in the regulation of aboveground defence upon belowground herbivory. However, based on our previous finding that ABA alone is not sufficient to trigger aboveground resistance against S. littoralis caterpillars, the results suggest that the ABA-inducible effects on DIMBOA and chlorogenic acid are not solely responsible for root herbivore-induced resistance against S. littoralis. Full text HTML PDF
Resumo:
OBJECTIVES Oxygenation of blood and other physiological solutions are routinely required in fundamental research for both in vitro and in vivo experimentation. However, very few oxygenators with suitable priming volumes (<2-3 ml) are available for surgery in small animals. We have designed a new, miniaturized membrane oxygenator and investigated the oxygen-transfer performance using both buffer and blood perfusates. METHODS The mini-oxygenator was designed with a central perforated core-tube surrounded by parallel-oriented microporous polypropylene hollow fibres, placed inside a hollow shell with a lateral-luer outlet, and sealed at both extremities. With this design, perfusate is delivered via the core-tube to the centre of the mini-oxygenator, and exits via the luer port. A series of mini-oxygenators were constructed and tested in an in vitro perfusion circuit by monitoring oxygen transfer using modified Krebs-Henseleit buffer or whole porcine blood. Effects of perfusion pressure and temperature over flows of 5-60 ml × min(-1) were assessed. RESULTS Twelve mini-oxygenators with a mean priming volume of 1.5 ± 0.3 ml were evaluated. With buffer, oxygen transfer reached a maximum of 14.8 ± 1.0 ml O2 × l(-1) (pO2: 450 ± 32 mmHg) at perfusate flow rates of 5 ml × min(-1) and decreased with an increase in perfusate flow to 7.8 ± 0.7 ml ml O2 × l(-1) (pO2: 219 ± 24 mmHg) at 60 ml × min(-1). Similarly, with blood perfusate, oxygen transfer also decreased as perfusate flow increased, ranging from 33 ± 5 ml O2 × l(-1) at 5 ml × min(-1) to 11 ± 2 ml O2 × l(-1) at 60 ml × min(-1). Furthermore, oxygen transfer capacity remained stable with blood perfusion over a period of at least 2 h. CONCLUSIONS We have developed a new miniaturized membrane oxygenator with an ultra-low priming volume (<2 ml) and adequate oxygenation performance. This oxygenator may be of use in overcoming current limitations in equipment size for effective oxygenation in low-volume perfusion circuits, such as small animal extracorporeal circulation and ex vivo organ perfusion.
Resumo:
Gebiet: Chirurgie Biomedizintechnik Biophysik Transplantationsmedizin Kardiologie Abstract: OBJECTIVES: – Oxygenation of blood and other physiological solutions are routinely required in fundamental research for both in vitro and in vivo experimentation. However, very few oxygenators with suitable priming volumes (<2-3 ml) are available for surgery in small animals. We have designed a new, miniaturized membrane oxygenator and investigated the oxygen-transfer performance using both buffer and blood perfusates. – – METHODS: – The mini-oxygenator was designed with a central perforated core-tube surrounded by parallel-oriented microporous polypropylene hollow fibres, placed inside a hollow shell with a lateral-luer outlet, and sealed at both extremities. With this design, perfusate is delivered via the core-tube to the centre of the mini-oxygenator, and exits via the luer port. A series of mini-oxygenators were constructed and tested in an in vitro perfusion circuit by monitoring oxygen transfer using modified Krebs-Henseleit buffer or whole porcine blood. Effects of perfusion pressure and temperature over flows of 5-60 ml × min(-1) were assessed. – – RESULTS: – Twelve mini-oxygenators with a mean priming volume of 1.5 ± 0.3 ml were evaluated. With buffer, oxygen transfer reached a maximum of 14.8 ± 1.0 ml O2 × l(-1) (pO2: 450 ± 32 mmHg) at perfusate flow rates of 5 ml × min(-1) and decreased with an increase in perfusate flow to 7.8 ± 0.7 ml ml O2 × l(-1) (pO2: 219 ± 24 mmHg) at 60 ml × min(-1). Similarly, with blood perfusate, oxygen transfer also decreased as perfusate flow increased, ranging from 33 ± 5 ml O2 × l(-1) at 5 ml × min(-1) to 11 ± 2 ml O2 × l(-1) at 60 ml × min(-1). Furthermore, oxygen transfer capacity remained stable with blood perfusion over a period of at least 2 h. – – CONCLUSIONS: – We have developed a new miniaturized membrane oxygenator with an ultra-low priming volume (<2 ml) and adequate oxygenation performance. This oxygenator may be of use in overcoming current limitations in equipment size for effective oxygenation in low-volume perfusion circuits, such as small animal extracorporeal circulation and ex vivo organ perfusion. – – © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Resumo:
After organ transplantation, recipient T cells contribute to graft rejection. Mesenchymal stromal cells from the bone marrow (BM-MSCs) are known to suppress allogeneic T-cell responses, suggesting a possible clinical application of MSCs in organ transplantation. Human liver grafts harbor resident populations of MSCs (L-MSCs). We aimed to determine the immunosuppressive effects of these graft-derived MSCs on allogeneic T-cell responses and to compare these with the effects of BM-MSCs. BM-MSCs were harvested from aspirates and L-MSCs from liver graft perfusates. We cultured them for 21 days and compared their suppressive effects with the effects of BM-MSCs on allogeneic T-cell responses. Proliferation, cytotoxic degranulation, and interferon-gamma production of alloreactive T cells were more potently suppressed by L-MSCs than BM-MSCs. Suppression was mediated by both cell-cell contact and secreted factors. In addition, L-MSCs showed ex vivo a higher expression of PD-L1 than BM-MSCs, which was associated with inhibition of T-cell proliferation and cytotoxic degranulation in vitro. Blocking PD-L1 partly abrogated the inhibition of cytotoxic degranulation by L-MSCs. In addition, blocking indoleamine 2,3-dioxygenase partly abrogated the inhibitive effects of L-MSCs, but not BM-MSCs, on T-cell proliferation. In conclusion, liver graft-derived MSC suppression of allogeneic T-cell responses is stronger than BM-MSCs, which may be related to in situ priming and mobilization from the graft. These graft-derived MSCs may therefore be relevant in transplantation by promoting allohyporesponsiveness.
Resumo:
Plants release herbivore-induced volatiles (HIPVs), which can be used as cues by plants, herbivores and natural enemies. Theory predicts that HIPVs may initially have evolved because of their direct benefits for the emitter and were subsequently adopted as infochemicals. Here, we investigated the potential direct benefits of indole, a major HIPV constituent of many plant species and a key defence priming signal in maize. We used indole-deficient maize mutants and synthetic indole at physiologically relevant doses to document the impact of the volatile on the generalist herbivore Spodoptera littoralis. Our experiments demonstrate that indole directly decreases food consumption, plant damage and survival of S. littoralis caterpillars. Surprisingly, exposure to volatile indole increased caterpillar growth. Furthermore, we show that S. littoralis caterpillars and adults consistently avoid indole-producing plants in olfactometer experiments, feeding assays and oviposition trials. Synthesis. Together, these results provide a potential evolutionary trajectory by which the release of a HIPV as a direct defence precedes its use as a cue by herbivores and an alert signal by plants. Furthermore, our experiments show that the effects of a plant secondary metabolite on weight gain and food consumption can diverge in a counterintuitive manner, which implies that larval growth can be a poor proxy for herbivore fitness and plant resistance.
Resumo:
BACKGROUND: Despite long-standing calls to disseminate evidence-based treatments for generalized anxiety (GAD), modest progress has been made in the study of how such treatments should be implemented. The primary objective of this study was to test three competing strategies on how to implement a cognitive behavioral treatment (CBT) for out-patients with GAD (i.e., comparison of one compensation vs. two capitalization models). METHODS: For our three-arm, single-blinded, randomized controlled trial (implementation of CBT for GAD [IMPLEMENT]), we recruited adults with GAD using advertisements in high-circulation newspapers to participate in a 14-session cognitive behavioral treatment (Mastery of your Anxiety and Worry, MAW-packet). We randomly assigned eligible patients using a full randomization procedure (1:1:1) to three different conditions of implementation: adherence priming (compensation model), which had a systematized focus on patients' individual GAD symptoms and how to compensate for these symptoms within the MAW-packet, and resource priming and supportive resource priming (capitalization model), which had systematized focuses on patients' strengths and abilities and how these strengths can be capitalized within the same packet. In the intention-to-treat population an outcome composite of primary and secondary symptoms-related self-report questionnaires was analyzed based on a hierarchical linear growth model from intake to 6-month follow-up assessment. This trial is registered at ClinicalTrials.gov (identifier: NCT02039193) and is closed to new participants. FINDINGS: From June 2012 to Nov. 2014, from 411 participants that were screened, 57 eligible participants were recruited and randomly assigned to three conditions. Forty-nine patients (86%) provided outcome data at post-assessment (14% dropout rate). All three conditions showed a highly significant reduction of symptoms over time. However, compared with the adherence priming condition, both resource priming conditions indicated faster symptom reduction. The observer ratings of a sub-sample of recorded videos (n = 100) showed that the therapists in the resource priming conditions conducted more strength-oriented interventions in comparison with the adherence priming condition. No patients died or attempted suicide. INTERPRETATION: To our knowledge, this is the first trial that focuses on capitalization and compensation models during the implementation of one prescriptive treatment packet for GAD. We have shown that GAD related symptoms were significantly faster reduced by the resource priming conditions, although the limitations of our study included a well-educated population. If replicated, our results suggest that therapists who implement a mental health treatment for GAD might profit from a systematized focus on capitalization models. FUNDING: Swiss Science National Foundation (SNSF-Nr. PZ00P1_136937/1) awarded to CF. KEYWORDS: Cognitive behavioral therapy; Evidence-based treatment; Implementation strategies; Randomized controlled trial
Resumo:
Breast cancer is the most common cancer among women with approximately 180,000 new cases being diagnosed yearly in the United States (1). HER2/neu gene amplification and subsequent protein overexpression is found in 20–30% of breast cancer patients and can lead to the promotion of various metastasis-related properties (2–4) and/or resistance to cancer therapies such as chemotherapy and radiation (5). ^ The protein product of the HER2/neu gene, p185, is a proven target for immunological therapy. Recently, passive immunotherapy with the monoclonal antibody Trastuzumab® has validated an immunological approach to HER2/neu+ breast cancer. Immunity to HER2/ neu, when found in breast cancer patients, is of low magnitude. Vaccination-induced HER2/neu-specific antibodies and HER2/neu-specific cytotoxic T cells could result in long-lived immunity with therapeutic benefit. Many features of DNA vaccines and attenuated viral vectors may contribute to the efficacy of prime-boost vaccination. In particular, vaccines capable of eliciting strong cell-mediated immunity are thought to hold the greatest promise for control of cancer (6–9). ^ To optimize cellular immunization to HER2/neu in my study, the HER2/neu gene was presented to the immune system using a priming vector followed by a second vector used as the boost. In both animals and humans, priming with DNA and boosting with a poxviruses, vaccinia or canarypox appears to be particularly promising for induction of a broad immune responses (10). ^ I tested three gene vaccines encoding the HER2/neu gene: (1) a plasmid, SINCP, that contains part of the genome of Sindbis virus; (2) Viral Replicon Particles (VRP) of Venezuela Equine Encephalitis virus (VEE) and (3) E1/E2a-deleted human Type 5 Adenovirus. In SINCP and the VRP, the caspid and envelope genes of the virus were deleted and replaced with the gene for HER2/neu. SINCP-neu, VRP- neu and Adeno-neu when used alone were effective vaccines protecting healthy mice from challenge with a breast cancer cell line injected in the mammary fat pad or injected i.v. to induce experimental lung metastasis. However, SINCP-neu, VRP-neu or Adeno-neu when used alone were not able to prolong survival of mice in therapeutic models in which vaccination occurred after injection of a breast cancer cell line. ^ When the vaccines were combined in a mixed regimen of a SINCP- neu prime VRP-neu or Adeno-neu boost, there was a significant difference in tumor growth and survival in the therapeutic vaccine models. In vitro assays demonstrated that vaccination with each of the three vaccines induced IgG specific for p185, the gene product of HER2/neu, induced p185-specific T lymphocytes, as measured by tetramer analysis. Vaccination also induced intracellular INF-γ and a positive ELISPOT assay. These findings indicate that SINCP-neu, VRP-neu and Adeno-neu, used alone or in combination, may have clinical potential as adjuvant immunotherapy for the treatment of HER2/neu-expressing tumors. ^
Resumo:
Tuberculosis is the leading cause of death in the world due to a single infectious agent, making it critical to investigate all aspects of the immune response mounted against the causative agent, Mycobacterium tuberculosis , in order to better treat and prevent disease. Previous observations show a disparity in the ability to control mycobacterial growth between mouse strains sufficient in C5, such as C57BL/6 and B10.D2/nSnJ, and those naturally deficient in C5, such as A/J and B10.D2/nSnJ, with C5 deficient mice being more susceptible. It has been shown that during M. tuberculosis infection, C5 deficient macrophages have a defect in production of interleukin (IL)-12, a cytokine involved in the cyclical activation between infected macrophages and effector T cells. T cells stimulated by IL-12 produce interferon (IFN)-γ, the signature cytokine of T helper type 1 (Th1) cells. It is known that a cell-mediated Th1 response is crucial for control of M. tuberculosis in the lungs of humans and mice. This study demonstrates that murine T cells express detectable levels of CD88, a receptor for C5a (C5aR), following antigen presentation by macrophages infected with mycobacteria. T cells from C5 deficient mice infected with M. tuberculosis were found to secrete less IFN-γ and had a reduced Th1 phenotype associated with fewer cells expressing the transcription factor, T-box expressed in T cells (T-bet). The altered Th1 phenotype in M. tuberculosis infected C5 deficient mice coincided with a rise in IL-4 and IL-10 secretion from Th2 cells and inducible regulatory T cells, respectively. It was found that the ineffective T cell response to mycobacteria in C5 deficient mice was due indirectly to a lack of C5a via poor priming by infected macrophages and possibly by a direct interaction between T cells and C5a peptide. Therefore, these studies show a link between the cells of the innate and adaptive arms of the immune system, macrophages and T cells respectively, that was mediated by C5a using a mouse model of M. tuberculosis infection. ^
Resumo:
Tuberculosis is a major cause of death due to an infection in mankind. BCG vaccine protects against childhood tuberculosis although, it fails to protect against adult tuberculosis. BCG vaccine localizes to immature phagosomes of macrophages, and avoids lysosomal fusion, which decreases peptide antigen production. Peptides are essential for macrophage-mediated priming of CD4 and CD8 T cells respectively through MHC-II and MHC-I pathways. Furthermore, BCG reduces the expression of MHC-II in macrophages of mice after infection, through Toll-like receptor-1/2 (TLR-1/2) mediated signaling. In my first aim, I hypothesized that BCG-induced reduction of MHC-II levels in macrophages can decrease CD4 T cell function, while activation of other surface Toll-like receptors (TLR) can enhance CD4 T cell function. An in vitro antigen presentation model was used where, TLR activated macrophages presented an epitope of Ag85B, a major immunogen of BCG to CD4 T cells, and T cell derived IL-2 was quantitated as a measure of antigen presentation. Macrophages with BCG were poor presenters of Ag85B while, TLR-7/9/5/4 and 1/2 activation led to an enhanced antigen presentation. Furthermore, TLR-7/9 activation was found to down-regulate the degradation of MHC-II through ubiquitin ligase MARCH1, and also stimulate MHC-II expression through activation of AP-1 and CREB transcription elements via p38 and ERK1/2 MAP kinases. I conclude from Aim-I studies that TLR-7/9 ligands can be used as more effective ‘adjuvants’ for BCG vaccine. In Aim-II, I evaluated the poor CD8 T cell function in BCG vaccinated mice thought to be due to a decreased leak of antigens into cytosol from immature phagosomes, which reduces the MHC-I mediated activation of CD8 T cells. I hypothesized that rapamycin co-treatment could boost CD8 T cell function since it was known to sort BCG vaccine into lysosomes increasing peptide generation, and it also enhanced the longevity of CD8 T cells. Since CD8 T cell function is a dynamic event better measurable in vivo, mice were given BCG vaccine with or without rapamycin injections and challenged with virulent Mycobacterium tuberculosis. Organs were analysed for tetramer or surface marker stained CD8 T cells using flow cytometry, and bacterial counts of organisms for evaluation of BCG-induced protection. Co-administration of rapamycin with BCG significantly increased the numbers of CD8 T cells in mice which developed into both short living effector- SLEC type of CD8 T cells, and memory precursor effector-MPEC type of longer-living CD8 T cells. Increased levels of tetramer specific-CD8 T cells correlated with a better protection against tuberculosis in rapamycin-BCG group compared to BCG vaccinated mice. When rapamycin-BCG mice were rested and re-challenged with M.tuberculosis, MPECs underwent stronger recall expansion and protected better against re-infection than mice vaccinated with BCG alone. Since BCG induced immunity wanes with time in humans, we made two novel observations in this study that adjuvant activation of BCG vaccine and rapamycin co-treatment both lead to a stronger and longer vaccine-mediated immunity to tuberculosis.
Resumo:
My dissertation focuses on two aspects of RNA sequencing technology. The first is the methodology for modeling the overdispersion inherent in RNA-seq data for differential expression analysis. This aspect is addressed in three sections. The second aspect is the application of RNA-seq data to identify the CpG island methylator phenotype (CIMP) by integrating datasets of mRNA expression level and DNA methylation status. Section 1: The cost of DNA sequencing has reduced dramatically in the past decade. Consequently, genomic research increasingly depends on sequencing technology. However it remains elusive how the sequencing capacity influences the accuracy of mRNA expression measurement. We observe that accuracy improves along with the increasing sequencing depth. To model the overdispersion, we use the beta-binomial distribution with a new parameter indicating the dependency between overdispersion and sequencing depth. Our modified beta-binomial model performs better than the binomial or the pure beta-binomial model with a lower false discovery rate. Section 2: Although a number of methods have been proposed in order to accurately analyze differential RNA expression on the gene level, modeling on the base pair level is required. Here, we find that the overdispersion rate decreases as the sequencing depth increases on the base pair level. Also, we propose four models and compare them with each other. As expected, our beta binomial model with a dynamic overdispersion rate is shown to be superior. Section 3: We investigate biases in RNA-seq by exploring the measurement of the external control, spike-in RNA. This study is based on two datasets with spike-in controls obtained from a recent study. We observe an undiscovered bias in the measurement of the spike-in transcripts that arises from the influence of the sample transcripts in RNA-seq. Also, we find that this influence is related to the local sequence of the random hexamer that is used in priming. We suggest a model of the inequality between samples and to correct this type of bias. Section 4: The expression of a gene can be turned off when its promoter is highly methylated. Several studies have reported that a clear threshold effect exists in gene silencing that is mediated by DNA methylation. It is reasonable to assume the thresholds are specific for each gene. It is also intriguing to investigate genes that are largely controlled by DNA methylation. These genes are called “L-shaped” genes. We develop a method to determine the DNA methylation threshold and identify a new CIMP of BRCA. In conclusion, we provide a detailed understanding of the relationship between the overdispersion rate and sequencing depth. And we reveal a new bias in RNA-seq and provide a detailed understanding of the relationship between this new bias and the local sequence. Also we develop a powerful method to dichotomize methylation status and consequently we identify a new CIMP of breast cancer with a distinct classification of molecular characteristics and clinical features.
Resumo:
Environmental cues can affect food decisions. There is growing evidence that environmental cues influence how much one consumes. This article demonstrates that environmental cues can similarly impact the healthiness of consumers’ food choices. Two field studies examined this effect with consumers of vending machine foods who were exposed to different posters. In field study 1, consumers with a health-evoking nature poster compared to a pleasure-evoking fun fair poster or no poster in their visual sight were more likely to opt for healthy snacks. Consumers were also more likely to buy healthy snacks when primed by an activity poster than when exposed to the fun fair poster. In field study 2, this consumer pattern recurred with a poster of skinny Giacometti sculptures. Overall, the results extend the mainly laboratory-based evidence by demonstrating the health-relevant impact of environmental cues on food decisions in the field. Results are discussed in light of priming literature emphasizing the relevance of preexisting associations, mental concepts and goals.
Resumo:
La diabetes mellitus es una enfermedad que se caracteriza por la nula o insuficiente producción de insulina, o la resistencia del organismo a la misma. La insulina es una hormona que ayuda a que la glucosa llegue a los tejidos periféricos y al sistema nervioso para suministrar energía. Actualmente existen dos tipos de terapias aplicada en tejido subcutáneo: mediante inyección múltiple realizada con plumas, y la otra es mediante infusión continua de insulina por bomba (CSII). El mayor problema de esta terapia son los retardos por la absorción, tanto de los carbohidratos como de la insulina, y los retardos introducidos por el sensor subcutáneo de glucosa que mide la glucosa del líquido intersticial, lo deseable es controlar la glucosa en sangre. Para intentar independizar al paciente de su enfermedad se está trabajando en el desarrollo del páncreas endocrino artificial (PEA) que dotaría al paciente de una bomba de insulina, un sensor de glucosa y un controlador, el cual se encargaría de la toma de decisiones de las infusiones de insulina. Este proyecto persigue el diseño de un regulador en modo de funcionamiento en CL, con el objetivo de conseguir una regulación óptima del nivel de glucosa en sangre. El diseño de dicho regulador va a ser acometido utilizando la teoría del control por modelo interno (IMC). Esta teoría se basa en la idea de que es necesario realimentar la respuesta de un modelo aproximado del proceso que se quiere controlar. La salida del modelo, comparada con la del proceso real nos da la incertidumbre del modelo de la planta, frente a la planta real. Dado que según la teoría del modelo interno, estas diferencias se dan en las altas frecuencias, la teoría IMC propone un filtro paso bajo como regulador en serie con la inversa del modelo de la planta para conseguir el comportamiento deseado. Además se pretende implementar un Predictor Smith para minimizar los efectos del retardo de la medida del sensor. En el proyecto para conseguir la viabilidad del PEA se ha adaptado el controlador IMC clásico utilizando las ganancias estáticas de un modelo de glucosa, a partir de la ruta subcutánea de infusión y la vía subcutánea de medida. El modo de funcionamiento del controlador en SCL mejora el rango de normoglucemia, necesitando la intervención del paciente indicando anticipadamente el momento de las ingestas al controlador. El uso de un control SCL con el Predictor de Smith mejora los resultados pues se añade al controlador una variable sobre las ingestas con la participación del paciente. ABSTRACT. Diabetes mellitus is a group of metabolic diseases in which a person has high blood sugar, due to the body does not produce enough insulin, or because cells do not respond to the insulin produced. The insulin is a hormone that helps the glucose to reach to outlying tissues and the nervous system to supply energy. There are currently two types of therapies applied in subcutaneous tissue: the first one consists in using the intensive therapy with an insulin pen, and the other one is by continuous subcutaneous insulin infusion (CSII). The biggest problems of this therapy are the delays caused by the absorption of carbohydrates and insulin, and the delays introduced by the subcutaneous glucose sensor that measures glucose from interstitial fluid, it is suitable to control glucose blood. To try to improve these patients quality of life, work is being done on the development of an artificial endocrine pancreas (PEA) consisting of a subcutaneous insulin pump, a subcutaneous glucose sensor and an algorithm of glucose control, which would calculate the bolus that the pump would infuse to patient. This project aims to design a controller for closed-loop therapy, with the objective of obtain an optimal regulation of blood glucose level. The design of this controller will be formed using the theory of internal model control (IMC). This theory is based on the uncertainties given by a model to feedback the system control. Output model, in comparison with the actual process gives the uncertainty of the plant model, compared to the real plant. Since the theory of the internal model, these differences occur at high frequencies, the theory proposes IMC as a low pass filter regulator in series with the inverse model of the plant to get the required behavior. In addition, it will implement a Smith Predictor to minimize the effects of the delay measurement sensor. The project for the viability of PEA has adapted the classic IMC controller using the gains static of glucose model from the subcutaneous infusion and subcutaneous measuring. In simulation the SemiClosed-Loop controller get on the normoglycemia range, requiring patient intervention announce the bolus priming connected to intakes. Using an SCL control with the Smith Predictor improves the outcome because a variable about intakes is added to the controller through patient intervention.