998 resultados para precursors-organic
Resumo:
This article shows the results of an exploratory study related to the separation of organic waste in order to offer suggestions for the improvement of waste disposal communication campaigns. The overall objective is to analyze attitude and behavior of those who do and those who do not separate organic waste, related to a specific promotional campaign carried out in two neighborhoods, in the municipality of Badalona (Spain), within the framework of the study of proenvironmental attitudes and behaviors and based on the Psychosocial Four Spheres Model. 1,010 interviews were conducted and data was analyzed using Chi-Squared Automatic Interaction Detector (CHAID). Waste separation behavior was used as a dependent variable. The reasons given to explain why people do or do not separate organic waste and sociodemographic variables, have been introduced as independent variables. In accordance with the Four Spheres Model, results show significant differences in waste separation. Based on the profiles obtained, we find some predictive variables that facilitate the development of communication campaigns according to the requirements of each community.
Resumo:
This article shows the results of an exploratory study related to the separation of organic waste in order to offer suggestions for the improvement of waste disposal communication campaigns. The overall objective is to analyze attitude and behavior of those who do and those who do not separate organic waste, related to a specific promotional campaign carried out in two neighborhoods, in the municipality of Badalona (Spain), within the framework of the study of proenvironmental attitudes and behaviors and based on the Psychosocial Four Spheres Model. 1,010 interviews were conducted and data was analyzed using Chi-Squared Automatic Interaction Detector (CHAID). Waste separation behavior was used as a dependent variable. The reasons given to explain why people do or do not separate organic waste and sociodemographic variables, have been introduced as independent variables. In accordance with the Four Spheres Model, results show significant differences in waste separation. Based on the profiles obtained, we find some predictive variables that facilitate the development of communication campaigns according to the requirements of each community.
Resumo:
The objective of this study was to assess the yield and fruit quality of apple produced with a conventional and an organic production systems in Southern Brazil. The orchards consisted of alternate rows from 10 to 12-year old 'Royal Gala' and 'Fuji' apple trees on M.7 rootstocks, grown as slender spindles, on 4x6 m spacing. Eighteen apple trees of each cultivar and management system were randomly selected and assessed for nutrition, flowering, fruit set, yield, and fruit quality during two growing seasons (2002/2003 and 2003/2004). The organic management system resulted in lower concentrations of K, Mg, and N in leaves and fruits, and in smaller fruits for both cultivars, and lower fruit yield for 'Fuji' than from the conventional production system. For both cultivars, fruits from the organic orchard harvested at commercial maturity had a more yellowish skin background color, higher percentage of blush in the fruit skin, higher soluble solids content, higher density, higher flesh firmness, and higher severity of russet than fruits from the conventional orchard. Fruit from the organic orchard had lower titratable acidity in 'Royal Gala', and higher incidence of moldy core and lower incidence of watercore in 'Fuji', than fruit from the conventional orchard. A non-trained sensory panel detected no significant differences for fruit attributes of taste, flavor and texture between fruit from the production systems for either cultivar.
Resumo:
The objective of this work was to evaluate the effect of organic compounds from plant extracts of six species and phosphate fertilization on soil phosphorus availability. Pots of 30 cm height and 5 cm diameter were filled with Typic Hapludox. Each pot constituted a plot of a completely randomized design, in a 7x2 factorial arrangement, with four replicates. Aqueous extracts of black oat (Avena strigosa), radish (Raphanus sativus), corn (Zea mays), millet (Pennisetum glaucum), soybean (Glycine max), sorghum (Sorghum bicolor), and water, as control, were added in each plot, with or without soluble phosphate fertilization. After seven days of incubation, soil samples were taken from soil layers at various depths, and labile, moderately labile and nonlabile P fractions in the soil were analysed. Plant extracts led to an accumulation of inorganic phosphorus in labile and moderately labile fractions, mainly in the soil surface layer (0-5 cm). Radish, with a higher amount of malic acid and higher P content than other species, was the most efficient in increasing soil P availability.
Resumo:
We have recently reported that Notch 1, a member of the Notch multigene family, is essential for the development of murine T cells. Using a mouse model in which Notch 1 is inactivated in bone marrow (BM) precursors we have shown that B cells instead of T cells are found in the thymus of BM chimeras. However, it is not clear whether these B cells develop by default from a common lymphoid precursor due to the absence of Notch 1 signaling, or whether they arise as a result of perturbed migration of BM-derived B cells and/or altered homeostasis of normal resident thymic B cells. In this report we show that Notch 1-deficient thymic B cells resemble BM B cells in phenotype and turnover kinetics and are located predominantly in the medulla and corticomedullary junction. Peripheral blood lymphocyte analysis shows no evidence of recirculating Notch1(-/)- BM B cells. Furthermore, lack of T cell development is not due to a failure of Notch1(-/)- precursors to home to the thymus, as even after intrathymic reconstitution with BM cells, B cells instead of T cells develop from Notch 1-deficient precursors. Taken together, these results provide evidence for de novo ectopic B cell development in the thymus, and support the hypothesis that in the absence of Notch 1 common lymphoid precursors adopt the default cell fate and develop into B cells instead.
Resumo:
Organic geochemical and stable isotope investigations were performed to provide an insight into the depositional environments, origin and maturity of the organic matter in Jurassic and Cretaceous formations of the External Dinarides. A correlation is made among various parameters acquired from Rock-Eval, gas chromatography-mass spectrometry data and isotope analysis of carbonates and kerogen. Three groups of samples were analysed. The first group includes source rocks derived from Lower Jurassic limestone and Upper Jurassic ``Leme'' beds, the second from Upper Cretaceous carbonates, while the third group comprises oil seeps genetically connected with Upper Cretaceous source rocks. The carbon and oxygen isotopic ratios of all the carbonates display marine isotopic composition. Rock-Eval data and maturity parameter values derived from biomarkers define the organic matter of the Upper Cretaceous carbonates as Type I-S and Type II-S kerogen at the low stage of maturity up to entering the oil-generating window. Lower and Upper Jurassic source rocks contain early mature Type III mixed with Type IV organic matter. All Jurassic and Cretaceous potential source rock extracts show similarity in triterpane and sterane distribution. The hopane and sterane distribution pattern of the studied oil seeps correspond to those from Cretaceous source rocks. The difference between Cretaceous oil seeps and potential source rock extracts was found in the intensity and distribution of n-alkanes, as well as in the abundance of asphaltenes which is connected to their biodegradation stage. In the Jurassic and Cretaceous potential source rock samples a mixture of aromatic hydrocarbons with their alkyl derivatives were indicated, whereas in the oil seep samples extracts only asphaltenes were observed.
Resumo:
The objective of this work was to evaluate the effect of organic and conventional coffee crops on biomass, population density and diversity of earthworms, in Lerroville, district of Londrina County, Paraná state, Brazil. Earthworm communities were sampled in three areas with organic coffee cultivation (CO1, CO2 and CO3), two with conventional coffee (CC1 and CC2), and a native forest fragment (MT). The soil of the areas CO1, CC1, and MT was classified as Nitossolo Vermelho (Rhodic Kandiudox), while CO2, CO3, and CC2 were on Latossolo Vermelho (Rhodic Hapludox). Eight samples were taken in each area on two occasions, winter and summer, using the Tropical Soil Biology and Fertility (TSBF) method in the 0-20 cm soil layer. The earthworms were handsorted and preserved in 4% formaldehyde, and were later weighed, counted and identified. The highest earthworm biomass, both in winter and summer, occurred in the CO3 area. For population density, the higher numbers of individuals were found in CO1 and CO3. The highest number of species was identified in the organic cultivation. The adoption of organic practices in coffee cultivation favored the diversity, density and biomass of earthworm communities.
Resumo:
A crucial step in the life cycle of arenaviruses is the biosynthesis of the mature fusion-active viral envelope glycoprotein (GP) that is essential for virus-host cell attachment and entry. The maturation of the arenavirus GP precursor (GPC) critically depends on proteolytic processing by the cellular proprotein convertase (PC) subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). Here we undertook a molecular characterization of the SKI-1/S1P processing of the GPCs of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the pathogenic Lassa virus (LASV). Previous studies showed that the GPC of LASV undergoes processing in the endoplasmic reticulum (ER)/cis-Golgi compartment, whereas the LCMV GPC is cleaved in a late Golgi compartment. Herein we confirm these findings and provide evidence that the SKI-1/S1P recognition site RRLL, present in the SKI-1/S1P prodomain and LASV GPC, but not in the LCMV GPC, is crucial for the processing of the LASV GPC in the ER/cis-Golgi compartment. Our structure-function analysis revealed that the cleavage of arenavirus GPCs, but not cellular substrates, critically depends on the autoprocessing of SKI-1/S1P, suggesting differences in the processing of cellular and viral substrates. Deletion mutagenesis showed that the transmembrane and intracellular domains of SKI-1/S1P are dispensable for arenavirus GPC processing. The expression of a soluble form of the protease in SKI-I/S1P-deficient cells resulted in the efficient processing of arenavirus GPCs and rescued productive virus infection. However, exogenous soluble SKI-1/S1P was unable to process LCMV and LASV GPCs displayed at the surface of SKI-I/S1P-deficient cells, indicating that GPC processing occurs in an intracellular compartment. In sum, our study reveals important differences in the SKI-1/S1P processing of viral and cellular substrates.
Resumo:
BACKGROUND: It has been proposed that the innate immune system plays a central role in driving the autoimmune T-cell cascade leading to psoriasis; however, there is no direct evidence for this. OBSERVATIONS: We observed aggravation and spreading of a psoriatic plaque when treated topically with the toll-like receptor (TLR) 7 agonist imiquimod. The exacerbation of psoriasis was accompanied by a massive induction of lesional type I interferon activity, detected by MxA expression after imiquimod therapy. Since imiquimod induces large amounts of type I interferon production from TLR7-expressing plasmacytoid dendritic cell precursors (PDCs), the natural interferon-producing cells of the peripheral blood, we asked whether PDCs are present in psoriatic skin. We identified high numbers of PDCs in psoriatic skin lesions (up to 16% of the total dermal infiltrate) based on their coexpression of BDCA2 and CD123. By contrast, PDCs were present at very low levels in atopic dermatitis and not detected in normal human skin. CONCLUSIONS: This study shows that psoriasis can be driven by the innate immune system through TLR ligation. Furthermore, our finding that large numbers of PDCs infiltrate psoriatic skin suggests a role of lesional PDCs as type I interferon-producing targets for the TLR7 agonist imiquimod.
Resumo:
The objective of this work was to evaluate the potential of an artificial mixture of volatile organic compounds (VOCs), produced by Saccharomyces cerevisiae, to control Sclerotinia sclerotiorum in vitro and in bean seeds. The phytopathogenic fungus was exposed, in polystyrene plates, to an artificial atmosphere containing a mixture of six VOCs formed by alcohols (ethanol, 3-methyl-1-butanol, 2-methyl-1-butanol and phenylethyl alcohol) and esters (ethyl acetate and ethyl octanoate), in the proportions found in the atmosphere naturally produced by yeast. Bean seeds artificially contamined with the pathogen were fumigated with the mixture of VOCs in sealed glass flasks for four and seven days. In the in vitro assays, the compounds 2-methyl-1-butanol and 3-methyl-1-butanol were the most active against S. sclerotiorum, completely inhibiting its mycelial growth at 0.8 µL mL-1, followed by the ethyl acetate, at 1.2 µL mL-1. Bean seeds fumigated with the VOCs at 3.5 µL mL-1 showed a 75% reduction in S. sclerotiorum incidence after four days of fumigation. The VOCs produced by S. cerevisiae have potential to control the pathogen in stored seeds.
Resumo:
The objective of this work was to assess the effect of different coffee organic cultivation systems on chemical and biological soil characteristics, in different seasons of the year. The following systems were evaluated: coffee intercropped with one (CJ1), two (CJ2) or three (CJ3) pigeon pea (Cajanus cajan) alleys; coffee planted under full sun (CS); area planted with sweet pepper and snap bean in a conventional tillage system (AC); and secondary forest area (FFR). Row spacing in CJ1, CJ2, CJ3 and CS was 2.0x1.0, 2.8x1.0, 3.6x1.0, and 2.8x1.0 m, respectively. Soil samples were collected at 10-cm depth, during the four seasons of the year. The results were subjected to analysis of variance, principal component analysis, and redundancy analysis. There was an increase in edaphic macrofauna, soil basal respiration, and microbial quotient in the summer. Total macrofauna density was greater in CJ2 followed by CJ3, CS, CJ1, AC and FFR; Coleoptera, Formicidae, and Isoptera were the most abundant groups. There are no significant differences among the areas for soil basal respiration, and the metabolic quotient is higher in CJ1, CJ3, and FFR. Microbial biomass carbon and the contents of K, pH, Ca+Mg, and P show greater values in AC.
Resumo:
To understand dissolved organic carbon (DOC) seasonal dynamics in a coastal oligotrophic site in the north-western Mediterranean Sea, we monitored DOC concentrations monthly over 3 yr, together with the meteorological data and the food-web-related biological processes involved in DOC dynamics. Additional DOC samples were taken in several inshore−offshore transects along the Catalan coast. We found DOC concentrations of ~60 µmol C l−1 in winter, with increasing values through the summer and autumn and reaching 100 to 120 µmol C l−1 in November. There was high inter-annual variability in this summer DOC accumulation, with values of 36, 69 and 13 µmol C l−1 for 2006, 2007 and 2008, respectively. The analysis of the microbial food-web processes involved in the DOC balance did not reveal the causes of this accumulation, since the only occasion on which we observed net DOC production (0.3 ± 1 µmol C l−1 d−1 on average) was in 2007, and the negative DOC balance of 2006 and 2008 did not prevent DOC accumulating. The DOC accumulation episodes coincided with low rates of water renewal (average 0.037 ± 0.021 d−1 from May to October) compared with those of winter to early spring (average 0.11 ± 0.048 d−1 from November to April). Indeed, the amount of DOC accumulated each year was inversely correlated with the average summer rainfall. We hypothesize that decreased DOC turn-over due to photochemical or biological processes mostly active during the summer and low water renewal rate combine to determine seasonal DOC accumulation and influence its inter-annual variability.
Resumo:
The production of transparent exopolymer particles (TEP) in response to several environmental variables was studied in 2 mesocosm experiments. The first (Expt 1) examined a gradient of 4 nutrient levels; the second (Expt 2) examined different conditions of silicate availability and zooplankton presence. Tanks were separated in 2 series, one subjected to turbulence and the other not influenced by turbulence. In tanks with nutrient addition, TEP were rapidly formed, with net apparent production rates closely linked to chl a growth rates, suggesting that phytoplankton cells were actively exuding TEP precursors. High nutrient availability increased the absolute concentration of TEP; however, the relative quantity of TEP produced was found to be lower, as TEP concentration per unit of phytoplankton biomass was inversely related to the initial nitrate dose. In Expt 1, an increase in TEP volume (3 to 48 µm equivalent spherical diameter) with nutrient dose was observed; in Expt 2, both silicate addition and turbulence enhanced TEP production and favored aggregation to larger TEP (>48 µm). The presence of zooplankton lowered TEP concentration and changed the size distribution of TEP, presumably by grazing on TEP or phytoplankton. For lower nutrient concentrations, the ratio of particulate organic carbon (POC) to particulate organic nitrogen (PON) followed the Redfield ratio. At higher nutrient conditions, when nutrients were exhausted during the post-bloom, a decoupling of carbon and nitrogen dynamics occurred and was correlated to TEP formation, with a large flow of carbon channeled toward the TEP pool in turbulent tanks. TEP accounted for an increase in POC concentration of 50% in high-nutrient and turbulent conditions. The study of TEP dynamics is crucial to understanding the biogeochemical response of the aquatic system to forcing variables such as nutrient availability and turbulence intensity.
Resumo:
The deposition of Late Pleistocene and Holocene sediments in the high-altitude lake Meidsee (located at an altitude of 2661 m a.s.l. in the Southwestern Alps) strikingly coincided with global ice-sheet and mountain-glacier decay in the Alpine forelands and the formation of perialpine lakes. Radiocarbon ages of bottom-core sediments point out (pre-) Holocene ice retreat below 2700 m a.s.l., at about 16, 13, 10, and 9 cal. kyr BP. The Meidsee sedimentary record therefore provides information about the high-altitude Alpine landscape evolution since the Late Pleistocene/Holocene deglaciation in the Swiss Southwestern Alps. Prior to 5 cal. kyr BP, the C/N ratio and the isotopic composition of sedimentary organic matter (delta N-15(org), delta C-13(org)) indicate the deposition of algal-derived organic matter with limited input of terrestrial organic matter. The early Holocene and the Holocene climatic optimum (between 7.0 and 5.5 cal. kyr BP) were characterized by low erosion (decreasing magnetic susceptibility, chi) and high content of organic matter (C-org > 13 wt.%), enriched in C-13(org) (>-18 parts per thousand) with a low C/N (similar to 10) ratio, typical of modern algal matter derived from in situ production. During the late Holocene, there was a long-term increasing contribution of terrestrial organic matter into the lake (C/N > 11), with maxima between 2.4 and 0.9 cal. kyr BP. A major environmental change took place 800 years ago, with an abrupt decrease in the relative contribution of terrestrial organic material into the lake compared with aquatic organic material which subsequently largely dominated (C/N drop from 16 to 10). Nonetheless, this event was marked by a rise in soil erosion (chi), in nutrients input (N and P contents) and in anthropogenic lead deposition, suggesting a human disturbance of Alpine ecosystems 800 years ago. Indeed, this time period coincided with the migration of the Walser Alemannic people in the region, who settled at relatively high altitude in the Southwestern Alps for farming and maintaining Alpine passes.
Resumo:
Submarine canyons are sites of intense energy and material exchange between the shelf and the deep adjacent basins. To test the hypothesis that active submarine canyons represent preferential conduits of available food for the deep-sea benthos, two mooring lines were deployed at 1200 m depth from November 2008 to November 2009 inside the Blanes canyon and on the adjacent open slope (Catalan Margin, NW Mediterranean Sea). We investigated the fluxes, biochemical composition and food quality of sinking organic carbon (OC). OC fluxes in the canyon and the open slope varied among sampling periods, though not onsistently in the two sites. In particular, while in the open slope the highest OC fluxes were observed in August 2009, in the canyon the highest OC fluxes occurred in AprilMay 2009. For almost the entire study period, the OC fluxes in the canyon were significantly higher than those in the open slope, whereas OC contents of sinking particles collected in the open slope were consistently higher than those in the canyon. This result confirms that submarine canyons are effective conveyors of OC to the deep sea. Particles transferred to the deep sea floor through the canyons are predominantly of inorganic origin, significantly higher than that reaching the open slope at a similar water depth. Using multivariate statistical tests, two major clusters of sampling periods were identified: one in the canyon that grouped trap samples collected in December 2008, oncurrently with the occurrence of a major storm at the sea surface, and associated with increased fluxes of nutritionally available particles from the upper shelf. Another cluster grouped samples from both the canyon and the open slope collected in March 2009, concurrently with the occurrence of the seasonal phytoplankton bloom at the sea surface, and associated with increased fluxes of total phytopigments. Our results confirm the key ecological role of submarine canyons for the functioning of deep-sea ecosystems, and highlight the importance of canyons in linking episodic storms and primary production occurring at the sea surface to the deep sea floor.