926 resultados para plant yield component
Resumo:
We have mapped and identifed DNA markers linked to morphology, yield, and yield components of lucerne, using a backcross population derived from winter-active parents. The high-yielding and recurrent parent, D, produced individual markers that accounted for up to 18% of total yield over 6 harvests, at Gatton, south-eastern Queensland. The same marker, AC/TT8, was consistently identified at each individual harvest, and in individual harvests accounted for up to 26% of the phenotypic variation for yield. This marker was located in linkage group 2 of the D map, and several other markers positively associated with yield were consistently identified in this linkage group. Similarly, markers negatively associated with yield were consistently identified in the W116 map, W116 being the low-yielding parent. Highly significant positive correlations were observed between total yield and yield for harvests 1-6, and between total yield and stem length, tiller number, leaf yield/plant, leaf yield/5 stems, stem yield/plant, and stem yield/5 stems. Highly significant QTL were located for all these characters as well as for leaf shape and pubescence.
Resumo:
Milk obtained from cows on 2 subtropical dairy feeding systems were compared for their suitability for Cheddar cheese manufacture. Cheeses were made in a small-scale cheesemaking plant capable of making 2 blocks ( about 2 kg each) of Cheddar cheese concurrently. Its repeatability was tested over 10 separate cheesemaking days with no significant differences being found between the 2 vats in cheesemaking parameters or cheese characteristics. In the feeding trial, 16 pairs of Holstein - Friesian cows were used in 2 feeding systems (M1, rain-grown tropical grass pastures and oats; and M5, a feedlot, based on maize/barley silage and lucerne hay) over 2 seasons ( spring and autumn corresponding to early and late lactation, respectively). Total dry matter, crude protein (kg/cow. day) and metabolisable energy (MJ/cow.day) intakes were 17, 2.7, and 187 for M1 and 24, 4, 260 for M5, respectively. M5 cows produced higher milk yields and milk with higher protein and casein levels than the M1 cows, but the total solids and fat levels were similar (P > 0.05) for both M1 and M5 cows. The yield and yield efficiency of cheese produced from the 2 feeding systems were also not significantly different. The results suggest that intensive tropical pasture systems can produce milk suitable for Cheddar cheese manufacture when cows are supplemented with a high energy concentrate. Season and stage of lactation had a much greater effect than feeding system on milk and cheesemaking characteristics with autumn ( late lactation) milk having higher protein and fat contents and producing higher cheese yields.
Resumo:
Understanding the relationships among testing environments is essential for better targeting cultivars to production environments. To identify patterns of cultivar, environment, cultivar-by-environment interactions, and opportunities for indirect selection for grain yield, a set of 25 spring wheat cultivars from China and the International Maize and Wheat Improvement Center (CIMMYT) was evaluated in nine environments in China and four management environments at CIMMYT in Cd. Obregon, Mexico, during two wheat seasons. Genetic background and original environment were the main factors influencing grain yield performance of the cultivars. Baviacora M 92, Xinchun 2 and Xinchun 6 showed relatively more stable and higher grain yields, whereas highly photoperiod sensitive cultivars Xinkehan 9, Kefeng 6 and Longmai 19 proved consistently inferior across environments, except in Harbin and Keshan, the two high latitude environments. Longmai 26, also from high latitude environments in the northeastern Heilongjiang province, was however probably not as photoperiodicly sensitive as other cultivars; from that region, and produced much higher grain yield and expressed a broader adaptation. None of the environments reported major diseases. Pattern analyses revealed that photoperiod response and planting option on beds were the two main factors underlying the observed interactions for grain yield. The production environment of planting on the flat in Mexico grouped together with Huhhot and Urumqi in both wheat seasons, indicating an indirect response to selection for grain yield in this CIMMYT managed environment could benefit the two Chinese environments. Both the environment of planting on the flat with Chinese Hejin and Yongning, and the three CIMMYT enviromnents planting on raised beds with Chinese Yongning grouped together only in one season, showing that repeatability may not be stable in this case.
Resumo:
Drought is a major constraint for rice production in the rainfed lowlands in Southeast Asia and Eastern India. The breeding programs for tainted lowland rice in these regions focus on adaptation to a range of drought conditions. However, a method of selection of drought tolerant genotypes has not been established and is considered to be one of the constraints faced by rice breeders. Drought response index (DRI) is based on grain yield adjusted for variation in potential yield and flowering date, and has been used recently, but its consistency among drought environments and hence its usefulness is not certain. In order to establish a selection method and subsequently to identify donor parents for drought resistance breeding, a series of experiments with 15 contrasting genotypes was conducted under well-watered and managed drought conditions at two sites for 5 years in Cambodia. Water level in the field was recorded and used to estimate the relative water level (WLREL) around flowering as an index of the severity of water deficit at the time of flowering for each entry. This was used to determine if DRI or yield reduction was due to drought tolerance or related to the amount of available water at flowering, i.e. drought escape. Grain yield reduction due to drought ranged from 12 to 46%. The drought occurred mainly during the reproductive phase, while four experiments had water stress from the early vegetative stage. There was significant variation for water availability around flowering among the nine experiments and this was associated with variation in mean yield reduction. Genotypic variation in DRI was consistent among most experiments, and genotypic mean DRI ranged from -0.54 to 0.47 (LSD 5% = 0.47). Genotypic variation in DRI was not related to WLREL around flowering in the nine environments. It is concluded that selection for DRI under drought conditions would allow breeders to identify donor lines with high drought tolerance as an important component of breeding better adapted varieties for the rainfed lowlands; two genotypes were identified with high DRI and low yield reduction and were subsequently used in the breeding program in Cambodia. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
There is evidence that high-tillering, small-panicled pearl millet landraces are better adapted to the severe, unpredictable drought stress of the and zones of NW India than are low-tillering, large-panicled modern varieties, which significantly outyield the landraces under favourable conditions. In this paper, we analyse the relationship of and zone adaptation with the expression, under optimum conditions, of yield components that determine either the potential sink size or the ability to realise this potential. The objective is to test whether selection under optimal conditions for yield components can identify germplasm with adaptation to and zones in NW India, as this could potentially improve the efficiency of pearl millet improvement programs targeting and zones. We use data from an evaluation of over 100 landraces from NW India, conducted for two seasons under both severely drought-stressed and favourable conditions in northwest and south India. Trial average grain yields ranged from 14 g m(-2) to 182 g m(-2). The landraces were grouped into clusters, based on their phenology and yield components as measured under well-watered conditions in south India. In environments without pre-flowering drought stress, tillering type had no effect on potential sink size, but low-tillering, large-panicled landraces yielded significantly more grain, as they were better able to realise their potential sink size. By contrast, in two low-yielding and zone environments which experienced pre-anthesis drought stress, low-fillering, large-panicled landraces yielded significantly less grain than high-tillering ones with comparable phenology, because of both a reduced potential sink size and a reduced ability to realise this potential. The results indicate that the high grain yield of low-tillering, large-panicled landraces under favourable conditions is due to improved partitioning, rather than resource capture. However, under severe stress with restricted assimilate supply, high-tillering, small-panicled landraces are better able to produce a reproductive sink than are large-panicled ones. Selection under optimum conditions for yield components representing a resource allocation pattern favouring high yield under severe drought stress, combined with a capability to increase grain yield if assimilates are available, was more effective than direct selection for grain yield in identifying germplasm adapted to and zones. Incorporating such selection in early generations of variety testing could reduce the reliance on random stress environments. This should improve the efficiency of millet breeding programs targeting and zones. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Seven years of multi-environment yield trials of navy bean (Phaseolus vulgaris L.) grown in Queensland were examined. As is common with plant breeding evaluation trials, test entries and locations varied between years. Grain yield data were analysed for each year using cluster and ordination analyses (pattern analyses). These methods facilitate descriptions of genotype performance across environments and the discrimination among genotypes provided by the environments. The observed trends for genotypic yield performance across environments were partly consistent with agronomic and disease reactions at specific environments and also partly explainable by breeding and selection history. In some cases, similarities in discrimination among environments were related to geographic proximity, in others management practices, and in others similarities occurred between geographically widely separated environments which differed in management practices. One location was identified as having atypical line discrimination. The analysis indicated that the number of test locations was below requirements for adequate representation of line x environment interaction. The pattern analyses methods used were an effective aid in describing the patterns in data for each year and illustrated the variations in adaptive patterns from year to year. The study has implications for assessing the number and location of test sites for plant breeding multi-environment trials, and for the understanding of genetic traits contributing to line x environment interactions.
Resumo:
Broccoli is a vegetable crop of increasing importance in Australia, particularly in south-east Queensland and farmers need to maintain a regular supply of good quality broccoli to meet the expanding market. A predictive model of ontogeny, incorporating climatic data including frost risk, would enable farmers to predict harvest maturity date and select appropriate cultivar – sowing date combinations. To develop procedures for predicting ontogeny, yield and quality, field studies using three cultivars, ‘Fiesta’, ‘Greenbelt’ and ‘Marathon’, were sown on eight dates from 11 March to 22 May 1997, and grown under natural and extended (16 h) photoperiods at the University of Queensland, Gatton Campus. Cultivar, rather than the environment, mainly determined head quality attributes of head shape and branching angle. Yield and quality were not influenced by photoperiod. A better understanding of genotype and environmental interactions will help farmers optimise yield and quality, by matching cultivars with time of sowing. The estimated base and optimum temperature for broccoli development were 0°C and 20 °C, respectively, and were consistent across cultivars, but thermal time requirements for phenological intervals were cultivar specific. Differences in thermal time requirement from floral initiation to harvest maturity between cultivars were small and of little importance, but differences in thermal time requirement from emergence to floral initiation were large. Sensitivity to photoperiod and solar radiation was low in the three cultivars used. This research has produced models to assist broccoli farmers in crop scheduling and cultivar selection in south-east Queensland.
Resumo:
The mean grain yield of 81 direct seeded (DS) and 91 transplanted (TP) environments that were conducted as part of 3 ACIAR projects over 11 years, from 1992-2002, in Laos, Thailand and Cambodia were examined. The average yield of TP rice was 6% greater than DS rice. A subset of 27 pairs of DS and TP environments was examined and results indicated a significant positive correlation between the DS and TP establishment methods for mean grain yield with only a 3% difference in overall performance. The performance of 3 genotypes in 3 locations in Laos in 1996 was also examined. Results indicated a highly significant positive correlation between the performance of genotypes in DS and TP experiments in which TP rice had a 30% yield advantage over DS rice. This particular experiment highlights the need for good management practices when DS establishment methods are utilised. Results of this paper indicate that DS and TP rice will produce a similar yield for a given environment provided that they are grown utilising good management practices.
Resumo:
Plants incorporate isotopes of carbon into their tissue at different rates because of discrimination against 13C relative to 12C during photosynthesis. This difference in discrimination has been negatively correlated with transpiration efficiency (TE) in many C3 species and so, carbon isotope discrimination (Δ) of leaf tissues has been proposed as a potential tool for selecting genotypes with improved performance under water limited conditions. The relationship between Δ and TE in sunflower has been described previously using diverse genotypes, but this relationship has not been investigated with material selected from a segregating population. In this study, the TE of twenty recombinant inbred lines from a population (HAR4 x SA52) segregating for Δ was evaluated in a rainout shelter experiment. A strong negative genetic correlation between TE and Δ was observed (rg = -0.58), confirming previous studies of sunflower with unrelated lines. In addition, TE was strongly correlated to plant height at the final harvest (rg = 0.64) and TDW (rg = 0.58), and moderately correlated to SLW (rg = 0.46) and SPAD (rg = 0.21) but not leaf number (rg = 0.02). Estimates of narrow sense heritability of TE and Δ were very high (0.82 and 0.77, respectively) suggesting that selection for these traits could occur in early generations of segregating populations. Grain yield evaluations under field conditions of hybrids contrasting for Δ showed that low Δ (high TE) hybrids had a yield advantage between 22-35% in dry environments where the yield was less than 2t/ha. While this level of yield advantage may not be realized in commercial breeding programs, computer simulations suggest that 10-15% yield improvements may be possible. Low Δ material selected from the population HAR4 x SA52 has been distributed to private seed companies for further evaluation.