835 resultados para physical models
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effects of nonlinear scalar field couplings on elastic proton-nucleus scattering observables are investigated using a relativistic impulse approximation. Nonlinear couplings affect in a nontrivial way the effective nucleon mass and the nuclear scalar and vector densities. Modifications on the densities might have observable consequences on scattering observables. Our investigation indicates that the description of the observables for the reactions p-O-16 and p-Ca-40 at 200 MeV are not greatly modified with the use of nonlinear models in comparison with the description using linear models.
Resumo:
We study the Glashow-Iliopoulos-Maiani mechanism for flavor-changing neutral-current suppression in both the gauge and Higgs sectors, for models with SU(3)L X U(1)N gauge symmetry. The models differ from one another only with respect to the representation content. The main features of these models are that in order to cancel the triangle anomalies the number of families must be divisible by three (the number of colors) and that the lepton number is violated by some lepton-gauge bosons and lepton-scalar interactions.
Resumo:
We calculate the Green functions of the two versions of the generalized Schwinger model, the anomalous and the nonanomalous one, in their higher order Lagrangian density form. Furthermore, it is shown through a sequence of transformations that the bosonized Lagrangian density is equivalent to the former, at least for the bosonic correlation functions. The introduction of the sources from the beginning, leading to a gauge-invariant source term, is also considered. It is verified that the two models have the same correlation functions only if the gauge-invariant sector is taken into account. Finally, there is presented a generalization of the Wess-Zumino term, and its physical consequences are studied, in particular the appearance of gauge-dependent massive excitations.
Resumo:
Water infiltration into soil is one of the basic factors for estimating irrigation intensity according to the plants' requirements; this is aimed at avoiding problems of surface run-off and degradation. The purpose of the present investigation was to determine the spatial variation of infiltration and its relationship to some physical properties of soil by means of geostatistical techniques in Typic Plinthaquult soils having average texture and flat relief. A 113 point mesh was designned, having a regular distance of 10 m between points, samples being taken from 0 to 0.20 meters depth. Sand, silt and clay content, bulk density, macroporosity, microporosity and total porosity were determined. Infiltration tests were carried out in the field by means of a 15 cm diameter ring. Descriptive statistics and geostatistics were used for analysing the data. Infiltration, silt and microporosity data did not fit a normal distribution curve. Infiltration had high variability, having an average 36.03 mm h(-1). Total porosity was 56.73%, this being the only property that did not show spatial dependency. The smallest ranges were observed for bulk density, macroporosity and microporosity, having values of less than 40 m. The smallest degrees of spatial dependence were observed for infiltration, silt and clay, evidence also being shown of the influence of silt and clay on infiltration rate. Contour maps were constructed; fitting them to the semivariogram models, together with studying the correlations, led to establishing relationships between the properties.
Resumo:
In this work we explore the consequences of dimensional reduction of the 3D Maxwell-Chern-Simons and some related models. A connection between topological mass generation in 3D and mass generation according to the Schwinger mechanism in 2D is obtained. In addition, a series of relationships is established by resorting to dimensional reduction and duality interpolating transformations. Non-Abelian generalizations are also pointed out.
Resumo:
We study the presence of symmetry transformations in the Faddeev-Jackiw approach for constrained systems. Our analysis is based in the case of a particle submitted to a particular potential which depends on an arbitrary function. The method is implemented in a natural way and symmetry generators are identified. These symmetries permit us to obtain the absent elements of the sympletic matrix which complement the set of Dirac brackets of such a theory. The study developed here is applied in two different dual models. First, we discuss the case of a two-dimensional oscillator interacting with an electromagnetic potential described by a Chern-Simons term and second the Schwarz-Sen gauge theory, in order to obtain the complete set of non-null Dirac brackets and the correspondent Maxwell electromagnetic theory limit. ©1999 The American Physical Society.
Resumo:
We show that the Higgs resonance can be amplified in a 3-3-1 model with a multi-Higgs-boson leptophilic scalar sector. This would allow the observation of the Higgs particle in muon colliders even for Higgs boson masses considerably higher than the ones expected to be seen in the electroweak standard model framework. ©1999 The American Physical Society.
Resumo:
In the present paper we introduce a hierarchical class of self-dual models in three dimensions, inspired in the original self-dual theory of Towsend-Pilch-Nieuwenhuizen. The basic strategy is to explore the powerful property of the duality transformations in order to generate a new field. The generalized propagator can be written in terms of the primitive one (first order), and also the respective order and disorder correlation functions. Some conclusions about the charge screening and magnetic flux were established. ©1999 The American Physical Society.